AD-A256 580 o @

T ER &

CENTER FOR PURE AND APPLIED MATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY

PAM- 550

IMPLEMENTATION OF MINIMAL REPRESENTATIONS IN 2D ISING MODEL CALCULATIONS

Beresford Parlett and Wee-Liang Heng

Department of Mathematics
University of California .
Berkeley, California 94720 .-




This report was done with support from the Center for
Pure and Applied Mathematics. Any conclusions or
opinions expressed in this report represent solely
those of the author(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.




Implementation of Minimal Representations

in 2D Ising Model Calculations!

May 1. 1992

1
Lo o
Beresford N. Parlett? Wee-Liang Heng { = : 4
i

Syatement A per telecon i
Richard Lau ONR/Code 1111 :
Arlington, VA 22217-5000 ‘

NWW 10/26/92 | l

DTIL Qoo o i —2aD L

'The authors gratefully acknowledge partial support from Office of Naval Research Contact No.
N0O0014-90-J-1372.

*Department of Mathematics and the Computer Science Division of the EECS Departient.
University of California. Berkeley.




Abstract

We present a new method for approximating the pzrtition function of 2D Ising models using
a transfer matrix of order 2". For n = 30 our current program tock about 20 seconds on
a Sparc station to obtain 4 correct decimals in the top two eigenvalues and 5 minutes for
6 correct decimals. Eigenvectors were computed at the same time. The temperature was
within 3% of critical.

The main idea is to force certain entries in vectors to have the same values and to find
the crudest representation of this tvpe that delivers the required accuracy. At no time does

our program work with vectors with 2" entries.




Contents

-]

9

Introduction
Basic Notation and Terminology
The subspace span(S, ) and its uses

Theory of indicial subspaces

4.1 Indicial sets. vectors and bases . . . . .. ... Lo
4.2 Action of duodiagonal matrices on indicial bases . . . .. ... .. ... ..
4.3 Structure of the column projection matrix . . . . . . . .. .. ... .. ...
4.4 Structure of the row projection matrix . . . .. ... ... ...

4.5 Selected combinatorial results . . . . . . . . .. ... L L.

Implementation of Indicial Subspaces
.1 Data structures for indicial sets and subspaces . . . . ... .. ... ...
Construction of projection matrices . . . . . . . . . . ... ..o

Applving the transfer matrix to approximate eigenvectors . . . . . ... ..

[\P1 IS BT IS |
SRRV

Computation of inner products . . . . . . ... ... L oo
53.4.1 0 colcollip(G1-92) - - v o o e e e e
5.4.2  colp_colp.ip( hi. 77-2
5.4.3  col_colp.ip(g. BY oo
544 colorowdp(gr-g2) - - - . o e e
5.4.5 colp-_rowp.ip( 771 . 712 O
5.4.6  col.rowpdp(g. RY o

(1)
(W1}

Computation of residual norms . . . . . . ... ... L L
Extracting Information from the Projections

Error Estimates

Numerical results

Comments on the Ising model

A PE, is similar to PF,

List of Figures

1 (‘ode for initialization of indexing scheme data structures . . ... ... ..
2 Code for initializing the column projection matrix . .. ... ... .....

3 Code for applving the transfer matrix . . . .. ... ... ... ... . ...

46

49

51

53




(1]

Noliy s |

Code for subroutine col_col_ip(g1-g2) . - - . . . .. . ...
(‘ode for subroutine colp_colpip(g,.92) - - . . . . . . .. ...,
Code for subroutine col_colpip(g.h) . . . . . oo i
(‘ode for subroutine col_rowdp(g;.gs).casel . . ... .. ... .. ... ..
(‘ode for subroutine col_rowdp(g.g2).case Il . . . . ... ... .. ... .

(‘ode for subroutine col_residual(g. IAz) ......................

List of Tables

S e W N

o

(‘ombinatorial properties of suffix-based indicial sets . . . . .. .. ... ..
Results for n = 10. B = 0.0001. T = 1.6 (true eigenvalue = 3.53189840135) .
Results for n = 10. B = 0.0001. T = 2.2 (true eigenvalue = 2.5922922453) .
Results for n =20. B=0.0001.7T =1.6 . ... ................
Results for n = 20. B=0.0001.T =2.2 . ... ... ... ... .......
Results for n =30. B=0.0001.T = 1.6 . . ... ... ... .........
Results for n =30. B=0.0001. T =22 . ... ... .. ...........



1 Introduction

The Ising model was proposed to explain properties of ferromagnets but since then it has
found application to topics in Chemistry and Biologyv as well as in Physics. For any reader
unfamiliar with the model we sav a few words and supply some references in Section 9. The
remainder of this section assumes some knowledge of the so called transfer matrix. This
paper presents a numerical method for computing properties of the 2D Ising model for given
parameter values such as magnetic field strength B. temperature T and coupling constants
J.

There are two avenues leading to such calculations: combinatorial and algebraic. Our
method is in the second category which makes use of a transfer matrix M/, associated with
a semi-infinite helical grid of “spins™ or “sites™ with n of them on each circular band. One
form of M, for n = 3 and n = 4. with the field strength B normalized with respect to the

coupling constant .J is as follows:

- _ -
a a~!

b b1
«t a

1-1
My = b ’

b b1

~1

a

])_1
a a
b b1

a a

a «a

.‘[4 =




where (with appropriate normalizations)

(2=B)/T_} — ~B/T (=2-B)/T

=€ and c =«

The attractive property of 1/, is that it is a nonnegative irreducible matrix whose
dominant eigenvalue (called the Perron root) is the wanted partition function per spin.
Thus it is only necessary to approximate this eigenvalue to the desired accuracy although
the associated eigenvectors are also useful in approximating quantities of phvsical interest.
Moreover M, is exceedingly sparse: it has exactly 2 non-zero entries per row (and column)
arranged in a regular pattern. There is only one difficulty: 1, is of order 27 and we are
interested in the case n — x. We know of no calculations with » > 20 up till now.

Our approach uses two finite families {S,,‘,}f:;‘ and {Il_l}fjf of orthogonal indicial vec-
tors. and approximates the top two column and row eigenvectors of M, from the subspaces

spanned bv them.
Step 0. Initialize / to 1.

Step 1. Represent in compact form. the orthogonal projection P of the transfer matrix M,
onto the subspace span(S, ;). In addition represent the projection @ of the adjoint

matrix AL onto the subspace span(7T, ;).

Step 2. C'ompute the two largest eigenvalues and the associated row and column eigenvec-
tors of P and Q. These are. in a sense. the best approximations from the given pair of

indicial subspaces span(S, ;) and span{7T, ;). However they may not be good enough.

Step 3. Evaluate residual norms. condition numbers and associated error bounds and es-
timates. If the estimates are satisfactory then compute the required properties of the
model and stop. Otherwise return to Step | with the next member of each family. i.e.

increase [ by 1.

Our goal is to creep up to the coarsest of our vector representations that permits ap-
proximations of the desired accuracy. This minimal representation. which is not known in
advance. gave us the name for our approach.

Note that the difficulty lies not in M, itself but in the the representation of vectors
in R*". Indeed the special structure of M, would permit evaluation of 1, r for any 2"-
dimensional vector v with great efficiencyv. However a procedure that costs O(2") mayv bhe
too much when » is large and our central problem is the representation of vectors in R?".

Sparse vectors occur in sparse matrix work and N. Fuchs [Fucs9]. when applving the
Power Method to 1, . keeps onlv the largest 1000 entries of each vector. This device is
satisfactory deep within the ferromagnetic region of the model. However after studying
the Perron vector in cases near the critical temperature we found that it contained almost
no small entries. In different language. every configuration in the “spin™ array contributes

significantly to the partition function.




As a substitute for sparsity we propose to limit the number of distinct values that can
occur among a vector's components. We do this by nmeans of a family of “indicial functions™.
Full details are given in Section 3 but here we sketch the idea.

A vector in R*" may be thought of as a function on {1.2.....2"}. What we call an
indicial function is really a partition of this index set into disjoint subsets on each of which
the vector is constant. Thus the vector takes on fewer than 2" distinct values. perhaps ounly
a few million of them. This sort of vector recalls H. Lebesgue’s approach to integration
via step functions. For a given partition f the set of all representable vectors forms a
subspace S of R?". We how to the influence of computer science and start counting at
0. If {ep..... ¢ 371} denotes the standard basis and if {15.93.214.866} is one subset in the
partition f then €15 4 €93 + €914 + €3a6 1s one member of a natural orthogonal basis for &y.
In other words. the natural basis vectors of R*" are aggregated according to f to produce
an orthogonal basis of Sy. An important feature of our approach is that these basis vectors
are never represented explicitlv in the computer. Careful index manipulation takes their
place. Moreover our choice of f vields a manageable representation of the projection F; of
M, onto 8. Py is nonnegative and irreducible. Py is not as sparse as M, but we hold it
in a compact form that permits the efficient formation of Pru for appropriate .

There is some freedom in the choice of the familv of f's. Qur f's are a compromise
hetween physics and the verv special structure of 1. Full details are given in Sections 3.
4. and 3.

The next task is to find the Perron vectors of Py. Recall that the top two eigenvalues

of M, coalesce as the temperature bhecomes critical. We have used two approaches:
(a) a block power method with a block size of 2.
(b) a nonsvmmetric Lanczos code.

The details are given in Section 6. It turns out that it pays to compute the two largest
eigenvalues together with their column and row eigenvectors. The reason that conventional
techniques such as these are appropriate is that with our current indicial functions f (and
). dim 8y = Oin*2=1y and so Py is of modest order. In addition we form and compute
similar quantities for Q¢ . the (orthogonal) projection of M onto an associated subspace
Sg. The extra information from Qg allows us to compute an approximate Perron row
vector ¥~ to match the Perron column vector r for Pr. Py and @ share the same Perron
root. Fortunately @ is diagonally similar to P; and need not be represented explicitly.
We would prefer to use the oblique projection of Af, onto the pair of subspaces (Sy. &)
but we have not vet found a convenient (sparse) representation because some of the canonical
angles between Sy and Sy equal 7/2 and this fact complicates the representation.
Associated with the vectors r (Pyr = rx) and y™ (y"Qyp = 7y~) are vectors z5 £ 8y
and w} € Sy that approximate the eigenvectors we seek. It is essential to be able to hound

or estimate the accuracy of our approximate eigentriple (7s. 27, w5y).

(o}




Fortunately by using our special bases in §; and Sy appropriately we can compute

{exactly in exact arithmetic) the associated residual vectors
rei= Myzp = zpmy. spor= Miwp — wpmp

and
wy= wizp /w2l zfll2)-

Although r; € R¥. sy € R*" we can accumulate ||rs||2 and ||sp]|* and wy during the
computation of zy and w7} and thus avoid ever having to store them. This is a key feature
of the efficiency of our method. From {|7||. ||s||. and w; we can compute error hounds and
error estimates. This is discussed in Section 7.

It is likely that our error estimates indicate that z;. wy and 7 are not sufficiently accu-
rate. In that case we pick the next indicial function f in our family so that f is a refinement
of fand §f C Sy. dim S7 = 2 dim Sy. Then we repeat the cvcle of approximations until
the accuracy requirement is met or our resources are exhausted. This 1s not an iterative
method because. in a finite nuwber of steps. the indicial function becomes the identity.

By creeping up to adequate approximations from below we ensure that we end up with
the coarsest indicial fuuction that meets the given tolerance. In this wav do we acliieve the
minimal representation. from our family. that gives our method its name.

[t is worth repeating that at no time in the cyvcle do we need to store a vector with 2°
components.

Quantities of interest are usually partial derivatives of the partition function. If we used
differences to estimate derivatives that would sharply increase the required accuracy of our
approximatiouns. Fortunately S. Gartenhaus [GarS3] and N. Fuchs [FucX9] have shown that
sowe of the quantities of interest may be expressed in terms of = and w™ and so there is no

need to use differences. This increases the scope of our approach significantly.

6




2 Basic Notation and Terminology

We will follow Householder's conventions: upper case Roman letters for matrices. lower case
letters for column vectors. and lower case Greek letters for scalars. However. the letters
t. j. k. l.m. n and t will be reserved for integers. All matrices and vectors vill be real.
The transpose of A will be denoted by A*. and the inner product of vectors r and y by
(z.y) = 27y. We will exclusively use the Euclidean norm for vectors: ||z|| = v7"z.

As the theory behind our indicial subspaces is intimately connected with the binary rep-
resentations of numbers, we will index the rows and columns of a matrix. and the elements
of a vector. starting from 0. unless otherwise specified. Thus for A € R!*™ and z € R™.
{A);, denotes the entry in row 7 and column jof A.0<i<I~1,0<j<m~1.and z(i)
denotes the i*! element of 2. 0 < i < m — 1.

The [ x m zero and identity matrices will be written as Ojxm and Ijx.m, respectively: the
2™ x 2" identity matrix will be written as I,. For Q € R¥*™, we let span{(@Q) denote the
subspace of R spanned by the m columns of Q. Similarly. if S is a set of vectors in R'. the
subspace spanned by these vectors will be denoted by span(S).

The symbol := will denote a definition. and the symbol O will mark the end of a proof.

By a (binary) string . we shall mean a finite sequence of Os and 1s. The empty string
is denoted by . We write {0.1}" for the set of all strings (including ¢). and {0.1}" for the
set of n-bit strings. n > 1. The length of a string w is denoted by |w|. the concatenation of
two strings w; and w2 by w) ow;. and the reversal of a string w (i.e. « written backwards)
by ...'R.

eg. {0.1}° = {000.001.010.011.100.101.110.111}.
[001101| = 6, 0100110 = 010110. 001101% = 101100.

We also define |¢| := 0. :f :=¢c.and cow =wo e :=w for any string w.

For a nonempty string «. we denote its i*? bit from the left by w(i). : = 1.2.....|w|.
Thus w = w(1)ow(2)o - ow(|w|). and R = wilwl)ow(|w|=1)o---0w(1). For given I.
1 <1 < |f. the I-bit prefix of « is the substring w(1)ow(2)o ---o0w(/). and the /-bit suffix
of w is the substring w(|w|—/+1)ow(|w|=1+2)0 - 0 w(lw|). The empty string ¢ will be
considered to be the 0-bit prefix and the 0-bit suffix of any string ... We shall also refer to
w(1}.w(1)ow(2) and «(|w|) as the leading bit. leading bit pair and trailing bit respectively
of a string w with || > 2.

There is a natural correspondence between binary strings and the nonnegative integers
N arising from the concept of the binary representation of numbers. We formalize this by
defining two functions:

v:{0.1}" — N mapping « € {0.1}" to the integer value it represents (r(s):= 0).
and for n > 1.

on :{0.1.....2" = 1} — {0.1}" mapping i € N to its n-bit binary representation.




We note that there is no uniqueness in these maps: two different strings may have the same
value under v. eg. v(011) = v(11) = 3. and a nonnegative integer is mapped to different
strings under different o,'s. eg. 72(3) = 11. a3(3) = 011. This. however. should cause no
confusion. We can extend v to sets of strings: v(E) = {viw):w € E}.EC{0.1}".n > L.
Two other properties of binary strings that are of interest to us are their 1-bit counts

and bit transition counts.

eg. 000000 has no 1s. 111111 has six 1s. and 101101 has four 1s.
000000 and 111111 have no bit transitions. 001111 has one bit transition.

101101 has 4 bit transitions, and 010101 has 5 bit transitions.

We note that for w € {0.1}". & has at most n 1s and at most n — 1 bit transitions.




T

3 The subspace span(S, ;) and its uses

span(Sy.) consists of all vectors in R?" constrained to carry the same value in various places
(or positions). Each position is given by a bit string of length n: the zeroth (top) position
is represented by 00...0 and the (2" — 1)th. or last. position is given by 11...1.

1. A typical set of those positions (i.e. strings of length n) that carry the same value is
characterized by a triple (w.k.t) and is called an indicial set and is denoted by I .

w is the common [-bit suffix of the positions (i.e. w is the substring
consisting of the last [ bits).
k is the common 1-bit count of the positions. and

t is the common bit transition count of the positions.
Here k and t reflect the physics but it is w that exploits the form of M,.

2. To each distinct I 4, corresponds the vector z, ;; obtained by summing those columns
of the 2™ x 2™ identity matrix whose indices belong to the set I, ¢ ;. In addition S,,; =
{2,k |w| = }. The columns of the 2" x |S, ;| matrix X are the z_, 4, appropriately
ordered. By our choice .X; has orthogonal. but not orthonormal. columns:

X[ X = Dx which is diagonal.

Note that S,,; and the columns of X, are the same sets. the latter are ordered. |S, ;| =
O(n?2'-1) for large n.

3. The vectors z, ;. are never represented explicitly. Our choice exploits the duodiagonal
structure of the transfer matrix M, so that

Mn(Sn.l) g (Sn.H-l )

One useful consequence is that the orthogonal projection of M, onto span{S, ;). writ-
ten

PS¢ = DY X M, X,
has at most 4 non-zero entries per column. More precisely. Pg ; is the representation
of M,’s projection in our basis given by X;’s columns. in order. The orthogonal

projector onto span(S, ;) is
X D}l X

4. Among other things we compute the dominant eigenpair (7.§) of PS:

PS5 = g7 ||gllec = 1,§(i) > 0.all 7.

n

The notation 7 reminds us that it is ‘ue Perron root of the matrix P¢,. Our method
defines (7. g). where

9= Xg.




as an approximation to the true dominant eigenvector of M,. However we need to
estimate the quality of g and this requires the computation of M, g. By Remark 3.

Mg = X142 C span(Sp.i41)

for an appropriate coefficient vector h. We can compute A from g without invoking

any 2"-vectors at all.

In order to realize the method outlined above several technical difficulties must be re-
solved. Step 2 requires an ordering. Step 3 requires a compact representation for the projec-

tion matrix. and Step 4 requires various inner products of vectors that are not represented

in a conventional way.

10




4 Theory of indicial subspaces

4.1 Indicial sets, vectors and bases

We begin by defining the building blocks of our indicial subspaces. Each such subspace is
obtained by forcing two vector components to have the same value if the binary represen-
tation of their indices have the same number of 1's, the same number of bit transitions and
the same [-bit suffixes, where ! is a fixed nonnegative integer. By grouping the indices of
equal-valued components together. we obtain a partition of the collection of indices. and an
associated basis for the subspace.

We first illustrate the ideas with a simple example with suffixes of length 1. The space
we shall work in is R3* and we shall regard indices as 5-bit binary strings. Consider the
subspace C of R3? obtained by forcing two components to have the same value if their
indices have the same 1-bit count, the same bit transition count and the same trailing
bit. By grouping the indices of equal-valued components together, we obtain a partition
of {00000..... 11111} into sets of strings. as shown in the fourth column of the example

11




below.
eg. trailing bit # 1s # transitions indicial sets indicial vectors

0 0 0 {00000} €o
0 1 1 {10000} €16
0 1 2 {00010.00100. 01000} €2 + €4 + €3
0 2 1 {11000} €24
0 2 2 {00110,01100} €6 + €12
0 2 3 {10010.10100} €18 + €20
0 2 4 {01010} €10
0 3 1 {11100} €28
0 3 2 {01110} €14
0 3 3 {10110.11010} €29 + €26
0 4 1 {11110} €30
1 1 1 {00001} €1
1 2 1 {00011} €3
1 2 2 {10001} €1
1 2 3 {00101.01001} €5 + €9
1 3 1 {00111} €-
1 3 2 {10011.11001} €19 + €25
1 3 3 {01011.01101} €11 + €13
1 3 4 {10101} €n
1 4 1 {01111} €15
1 4 2 {10111.11011.11101} €93 + €25 + €29
1 5 0 {11111} €31

We call each member of the partition an indicial set. To each indicial set I. we can associate
an indicial vector. which has ones in positions whose indices are in 1. and zeros elsewhere.
Each indicial vector is therefore @ sum of vectors from the standard basis {eo..... €31}
These vectors are shown in the last column of the example. A moment’s thought will reveal
that they form a basis for the subspace C.

Formally. we define

Definition 4.1.1 Letn > 1.0 < k< n, 0<t<n-1, and w € {0.1}" with || < n.
Define

I" o= {n €{0.1}" : u has k 1s and t bit transitions, and « is the |w|-bit suffir of u}.

I" ., is called a suffix-based indicial set. For a given w € {0.1}" with |«| < n, we call a
pair k. t legitimate if I7 ., # 0.

12




eg. I!,,={0000}. Ij,,={1011.1101}. I}, ,,= {1001}
We leave it as an exercise for the reader to verifv that I‘{’3‘3 = 0.
Definition 4.1.2 Suppose E C {0.1}", n > 1. Define the vector rg € R*" by:
. 1 ifon(i) € E
Tg(1) = . .
0 ifon(i)¢E
zg (considered as a function on integers) can be regarded as the characteristic function \g
of E. If E is a suffir-based indicial set, 1.e. E = 17, , for some «. k and t. we call 2g

a suffix-based indicial vector and we also write it as z , .. Note that zp = 0. and that
lzgl* = |E|.

Definition 4.1.3 Letn > 1, 0 <1 < n. Define

0<i<2"—1.

Snai=H{2l 1, 1 |w| = 1. k.t legitimate}.

An order will be imposed on S, in Section 5.1 and so we call S, an indicial basis and

span(S, ) an indicial subspace.

In discussions where the value of n is assumed fixed, we will omit it in writing indicial
objects. Thus. we write I, x; and 7 . instead of I” , , and 7, , , respectively.

In an analogous fashion. we can define prefix-based indicial sets J” . vectors y” , . and
bases T,;. It turns out. however. that prefix-based indicial objects can be derived from
corresponding suffix-based ones. This will be explored in Section 4.4.

We note here for future analvses some fundamental properties of suffix-based indicial
sets, vectors and bases. We urge the reader to go through them carefully.

Fundamental Properties

Proposition 4.1.1 For fired n and |w|, the nonempty indicial sets I”, , , are disjoint. Thus
for 0 <1 < n, Sp; is an orthogonal set (i.e. for .y € Spy, z # y = 27y = 0) and so is
linearly independent.

Proposition 4.1.2 For fired n and |«|. the collection of nonempty indicial sets 1", , is «a
partition of {0.1}". Thus for each 0 < i < 2™ — 1. there is a unique x € S, with z(i) = 1.

Proposition 4.1.3 The trailing bit and the parity of the bit transition countt of a nonempty
string u determines its leading bit.

Proof. An even number of transitions (viewing from the right end of u to its left end)

preserves the trailing bit whereas an odd number of transitions reverses the trailing bit. O

Proposition 4.1.4 The strings in each indicial set I" , ,. n > 2. w # ¢, all have the same
leading bit since:

(a) the trailing bit of » determines the trailing bit of each p € I”, ; ,.
(b) by Proposition 4.1.3. if t is even. the leading bit of each p € 17 |, must be the same
as its trailing bit: if t is odd. the leading bit must be different.

13




4.2 Action of duodiagonal matrices on indicial bases

Our primary goal is to analvze the structure of the column projection matrix Pfl;', and of the
row projection matrix P,fl. This requires us to understand the action of the transfer matrix
M, on basis vectors z in S, for [ > 1. In this section. we shall see how to decouple the
action of M,. and thus express M,z as a linear combination of indicial vectors. Section 4.3
then analyzes the structure of PS, and PR for ! > 1.

Let n be a fixed integer > 3. and  be a fixed integer > 1. Recall that PS;, = D3' X "M, X
where the columns of X are vectors in Sy ;. and Dy = X" X. To elucidate the action of M,
on X. we introduce a general class of duodiagonal matrices [',. of which M, is a special

case. We first illustrate it for n = 4:

[ ud u3 |
ul ul
uf uj
w2 3
ud u3
) o
¥
['.4 = ug ug
u u$
. .
uy uj
i
¥ 8
uj uj
u? u?
! uj uj |

In general. we consider the 2" x 2™ duodiagonal matrix defined below:

Definition 4.2.1 Let n be an integer > 3. The 2™ x 2" duodiagonal matriz

r [ ( ud ud\ [ u) W u)  ul ug ul
n 1 3 /" 1 3 /¢ 1 3} 1 3 '
ug Uy u; Uy u; uj uy  u3

abbreviated by U, is given by:

O T R -
Ogn-1yqn-2 n Ogn=1ygn=2 n
where
(e O ug 0
l_io) _ o c R2n-1x2n—2. o) = u(l, 0,,
0 uj
O 9 0 u

14




[ () O 1 ( W0 ]
l'(l) 1 0
on=1yon=2 _ U.l
l’,‘,” = . ER x . v = 0 o2
. 2
e rm | | 0w |
[ (2 O ] [ u 0 ]
@) ul 0
(2) _ 2n=1yxon-2 r(2) _ 2
U = ) €R . l = 0 u2
. 2
e U | | 0 u3 ]
O O ] (g 0 ]
L'(3) 1 O
7(3) _ 2n=1ygn=2 r3) _ | U3
Uy’ = ) €R . { = 0 2
. 3
e re | |0 |

The k™ column of U, is denoted by ug. k = 0.1,....2" = 1.

The transfer matrix M, is equal to

A ) )

Our goal in this section is to show that the result of applving {’; to an indicial vector

o

o

can be expressed as a linear combination of 2 or 4 indicial vectors. Before beginning the
analysis, we illustrate the ideas by working out the action of I's on some of the basis vectors
in Ss.; in the example below. The columns of the 32 x 32 identity matrix I will be denoted
by {eo-€3.. ... e3;}. We urge the reader to go through the example carefully. and to observe
in each case how the result of applving U5 to an indicial vector could be expressed as a

linear combination of 2 or 4 indicial vectors.

eg. (a) I}, ,={00010.00100.01000}. z§,, = €2+ €4 + €5.
Uszga0 = Usez + Useq + Uses
= ug + u4 + ug

(udes + uges) + (udes + upeg) + (ulers + ulers)

ug(e4 +eg) + u(l)(es. + €e9) + u(])ele + u}el,—

— ,0..5 1..5 0.5 . 1.5
= UgZoo.1.2 + YpT01.2.3 T ¥1%00.1.1 T U1T01.2.2
(b) 13 ,,={10010.10100}. zj,5 = €15+ €20.
Uszgp3 = u1s + ugo
= (udeq + ujes) + (udes + ujeq)

0.3 1.5
UZ00.1.2 + U2T01.2.3

15



(¢) I§,,=1{10111.11011.11101}. 2} ,, = €23+ co7 + €20.
('51';.4_2 = U3 + Uzt + Upg
= (Ugfu + Ugfls) + (udezn + ul€3) + (uieze + ulezr)
= 4323030 + Usz1 140 + 320023 + U3TT 42
(d) Ii;; ={o0t11}. 233, = e,
[vsxi.s.l = us
= uders + ugers

.25 3.5
= UpTy03.2 T UpT11.4,1

Efficient processing with duodiagonal matrices ', depends on the following key obser-

vations regarding their nonzero entries:

(a)
(b)

the nonzero entries of u; occur exactly at positions 2k mod 2" and (2k + 1) mod 2".

the parameters ufi and uf”’l (¢t = 0.1. j = 0.1.2.3) are the nonzero entries of

112"_2_]+2k+i* 0 S k S 2"—3 - 1.

eg. for 5. the parameters u? and uj (i.e. i = 1. j = 1) are the nonzero

entries of ug. uy1. u13 and uys.

?i and uf”’l

k€ {0.1.....2" — 1} where the leading bit pair of o,(k) is @2(j) (the 2-bit binary

Equivalently. the parameters u are the nonzero entries of u;. for those

representation of j) and the trailing bit of 6,(%) is a,(7) (the 1-bit binary representa-
tion of 7). In the above example. the only 3-bit strings with leading bit pair 01 and
trailing bit 1 are

05(9) = 01001, o5(11) = 01011. 05(13) = 01101 and o5(13) = 01111,

Sincc our indicial subspaces are characterized using bit strings. we would like to charac-

terize

the positions of the nonzero entries of (", similarly. In particular. we need operators

on bit strings that correspond to multiplving by 2 (and then possibly adding 1) module 2™.

The operators 2. and 2. + 1 defined below accomplish that. We urge the reader to read

the definition with care.

Definition 4.2.2 For a nonempty string «. the strings 2. and 2« + 1 are defined by:

20 = w(2)ow(3)o--row(|w])o0

and 204+1 = W(2)ow(3)o--ow(|w])o 1.

It is easily verified that v(2w) = 2v{w) mod 2! and v(2w + 1) = (2v(w) + 1) mod 2. W
ertend the definition to sets of strings: for E C {0.1}". n > 1.

2E:={20:w€E} and 2E+1:={2o4+1:w€E}.

16




Note that for a nonempty string «. 2w and 2w + 1 are suffixes of w00 and « o 1 respectivelv.

Proposition 4.2.1 restates observations (a) and (b) in terms of bit strings.

Proposition 4.2.1 Let 0 < k < 2"~ 1, and let uy = a,(k). The nonzero entries of u;. are

J2‘ and u?'“. where | = v(p(n)) and j = v(u(l) o u(2)). and they occur at positions v(2u)

and v(2u + 1) respectively.

Uu

We remind the reader that for a string u € {0.1}". v(u) denotes the integer value it
represents.

We now consider the action of I’ on a special kind of indicial vector. Suppose E C
{0.1}" is such that all its strings have the same leading bit pair x; and the same trailing
bit u,. Recalling that a matrix-vector product is a linear combination of the columns of the

matrix with coefficients given by the entries of the vector. we see that

Unzg = Z up = Z Up.

k where k where
rp{k)=1 onlk) €E

From Proposition 4.2.1, the u,’s involved in the vector sum have the same two parameters

2

us and uf‘“ (where 7 = v(u;) and j = v(y;)) as their nonzero entries. and those entries

have indices in v(2E) and v(2E + 1) respectivelv. We have established the following:

Theorem 4.2.2 (c¢f. Theorem 2.3.2. [Hen91]) Let E C {0.1}". n > 3. be such that all its
strings have the same leading bit pair p; € {0. 1}? and the same trailing bit u, € {0.1}".

Then

2

i 2i+1
J I2E + u

Uhzg = u T T9E+41
where i1 = v(us) and j = v(py).

Theorem 4.2.2 suggests that for a nonempty indicial set E = I 4 (|w] = ). the result
[.zg can be decomposed by partitioning the strings in E according to their 27 leading
bit. We formalize this below.

Definition 4.2.3 Let E C {0.1}". n > 2. We define

E° = {«€E:w(2) =0}
and E! = {w € E:w(2)=1}.

i.e. E® and E! are subsets of strings in E having 2™ leading bit 0 and 1 respectively. It
follows from the definition that E is the disjoint union of E® and E!.

eg. E ={0011.0100.0101.1000}. E° = {0011.1000}. E! = {0100.0101}.
E = {0010.0011}. E°=E, E! =90.

Theorem 4.2.3 (cf. Theorem 2.1.7. [Hen91]) Let E=1", .. n > 2. w # . Then |2E°| =
12E° + 1| = |E®| and |2E!| = |2E! + 1] = |E!|.

17




Consider now applving (", to the indicial vector x_ ;: € S,;. Let E=1_ ;. Then the
strings in E? have the same leading bit pair and the same trailing bit since Proposition 4.1.4
determines the leading and trailing bits. and the 29 leading bit is 0 by definition. Similary.
the strings in E! have the same leading bit pair and the same trailing bit. Thus E® and E!

each satisfv the conditions of Theorem 4.2.2.

Corollary 4.2.4 Let E = 1 4;. |w| = . be a nonempty indicial set. and let i; denote the
leading bit of strings in E. Then

Unzg = Unzgo + UnZp:

= (uf’ron + “3‘+1x2E°+1)+ ("12”112}:1 + "f’lﬂ‘rinH) (1)

where ¢ = v(w(l)). j = v(wo0) and j' = v(u o 1).

The vectors appearing in (1) are in fact suffix-based indicial vectors. as Theorem 1.2.5

shows.

Theorem 4.2.5 (cf. Theorem 2.1.8. [Hen91]) Let E =17, ,. n > 3. 0 < |~| < n. Then
2EC. 2E° + 1. 2E! and 2E! + 1 are themselves suffiz-based indicial sets. and there erist
bk, = 1 and 6t, = £1. i = 0.1.2.3. such that:

R
2E° = Look+sko.t+5t0 S Yow k+6ko.t4520

o0

2E” + 1 = Lot ksskt46t © Lot k46, 0461, -
ol _

2EY = Lo0.k+sky.t45t; © Tow kasky 14885

ol
2E" + 1 = Lot k4 kat46ts © Towt1hd6ks.t46ta-

Furthermore. the pairs (ék;.6t;). i = 0.1.2.3. are distinct. and so 2E°. 2E® + 1. 2E! and
2E! + 1 are pairwise disjoint.

Proof. We will not prove the theorem here, but instead give the values of ék; and ét, for
different cases.
a) trailing bit of w is 0 and ¢ is even:

A0 _ In 90 — In
2E° = I 04 2E” +1 =100 k1 41-

2E! = I o0 kt-1- 2El +1= Dot hare
b) trailing bit of w is 0 and ¢ is odd:

2EV =17 o h_ppere 2E04+1=100, .
2E! = I 0k-1.4" 2E' +1= Lot kas1:

c) trailing bit of w is 1 and t is even:

2B =100 4y,r 2EO41=T10 .0 .
2E1 = I:oo.k—].t+1' 2E1 +1= I:ol.k.i‘

18




d) trailing bit of w is 1 and t is odd:

2E°=1" 11 2E0+1= Lot ka1

ol Rl 41 =
2E'=1"y,,. 2El'4+1= Dotheri-1 O

Note that if E? = 0. then T,p0 = T,p0,, = 0.and that if E! = 0. then T,pl = Tp1,, =
0. However. E° and E! cannot both be empty since E = EC UE! and E is nonempty. In
addition. the nonzero vectors among r,po- T,g041- T,g1 and 7,py , are distinct from each
other since 2E°. 2E° + 1. 2E! and 2E! + 1 are pairwise disjoint by Theorem 4.2.5. So [, g
1s a linear combination of etther 2 or | suffiz-based indicial vectors.

We can in fact relate [,z to the vectors in the basis S,, ;. Define a subvector of a vector
T to be a vector obtained by setting zero or more entries of r to 0. i.e. a subvector has the
same number of entries but more of them are 0. From Theorem 4.2.5. T,50- TR0, THE1
and r,p1 ., are subvectors of different vectors in S, since |2w| = |2 + 1] = [. Thus {2g
is a linear combination of ejther 2 or 4 subvectors in S, .

To recapitulate our analysis. we rework the example given at the beginning of the section.

eg. (a) E=1I3,,={00010.00100.01000}, E® = {00010.00100}. E! = {01000}.

2E° = {00100.01000}. 2E° + 1 = {00101.01001}.
2E! = {10000}. 2E! 4+ 1 = {10001}.
Usrg = u8.t2Eo + uéronH + “(1)-7-'21'-31 + 1‘%I2E1+1

(b) E=1I5,,={10010.10100}. E° = {10010.10100}. E! = 0.
2E° = {00100.01000}. 2E® 4+ 1 = {00101.01001}.
Ustg = 437,50 + ubI,p0,

() E=1Ij,,={10111.11011. 11101}, E® = {10111}, E! = {11011.11101}
2E° = {01110}. 2E® + 1 = {01111},
2E! = {10110.11010}. 2E! + 1 = {10111.11011}
UsTE = u3,p0 + U325p0,y + U32,p1 + U3L,E1 4

(d) E=13,, = {oo111}. E® = {o0111}. E! = 0.
2E° = {01110}. 2E° + 1 = {01111},

- 2 3
L2 = UgT,po + UpTHE0 .

4.3 Structure of the column projection matrix

Armed with our understanding of the action of duodiagonal matrices on suffix-based indicial
bases. the analysis of the structure of the column projection matrix P, becomes straight-
forward. We shall show that for { > 1. PS, is sparse with either 2 or 4 nonzero entries per
column. and we shall precisely locate the positions of those entries. and express their values

in a way that enables them to be computed without using any vectors in R*".

19




As before. we shall work with the general duodiagonal matrix {’,. The corresponding

results for M, can be obtained by substituting

-1 -1 -1 -1
an[v.n|'<a a>:<b b):<a a ):<b b1>~
i\ & b c ¢ b1 pt ¢l oem

Consider the projection matrix P = D}I.X"l"nX. where the columns of X are the
vectors in Sp; and Dy = X".X. We index the rows and columns of P by the triple (<. k.1)
where z_ 4+ € Sn.i. Then the entry in row (&' k'.t') and column (w. k.t) of P is given by:

1 1

lz (%ﬂ.k'.t'- Fn-"w.k.t)

ToprpUnt .
2w ko er] ]< okttt UnZu k)

) WY
Let E = I ;. The analyvsis of Section 4.2 shows that [',zg is a linear combination of either
2 or 4 subvectors in S, (with each subvector arising from a different basis vector). Since
the vectors in Sy have pairwise disjoint supports (cf. Proposition 4.1.2). P is sparse with
2 or 4 nonzero entries per column arising from the nonzero inner products (z_s ;s . [ h2E).
Specifically. column (w.k.t) of P has 2 nonzero entries if one of E® and E! is emptyv. and
has 4 nonzero entries if both E® and E! are nonempty.

Theorem 4.3.1 Let E = 1_ ;. |«| = 1. be a nonempty indicial set. and for each bit string
in E denote the leading bit by ;. Let bk,. ét;. 1 = 0.1.2.3. be as given in Theorem J.2.5.
and let i = v(w(l)). j = v(p 00) and j' = v(w o 1). IfFE® % 0. then column (. k.t) of P
has nonzero entries in rows (2w.k + bko.t + 0tg) and (2. + 1.k + bky.t + 6ty) with values

1 N 1 .
I_—'—'_'——_("'Zu.k+5ko.t+éto- U,rg) = —I‘—_—f"f’l?Eol
| 2.;.k+oko.t+cto‘ \ Qwk+8ko . t+0tg |

1

= uf’[Eof by Theorem 4.2.3
|I2.u.k+o'ko,t+o’tol

and

1 _ : |
(Tow+1.k+6k; t+6t,- LnTE) = ufz-{-l |E°|
2w+ 1 k+8k) 14601 ]

) CRS RTINS
respectively: if EY # 0. then column («. k.t) has nonzero entries in rows (2uw. k+6ky. t +612)
and (2w + 1.k + k3.t + 6t3) with values

1 1 2

T————_—(l‘zu.k+6k2.t+6t2-l'n1'£:) = - - UJ'1IE1|
ok t5ky.t 4015 |Tow ktsky.t45t2]
and
1 - 1 2141 1
1 <1'2w+1,k+6k3.t+613-(‘nIE) = - Uy |E |
How+ 1 ktsky tots | g +1.k48ky t4005 ]
respectively.

Note that in Theorem 4.3.1. we could precisely locate the positions of the nonzero entries
of P. More importantly. each inner product (involving two vectors in R?") was expressed
as a product of an entrv in [, and the cardinality of a suffix-based indicial set. Section 4.5
gives formulas for those cardinalities. Thus the projection matriz P can be computed in

time proportional to |S, || and without using any vectors in R?".

20



4.4 Structure of the row projection matrix

The analysis of the structure of the column projection matrix Pnc', could be adapted to the

row projection matrix P,f, = D)’.l)"‘M;)’ by considering directly how multiplication by M

affects prefix-based indicial vectors. It is. however. more illuminating to exploit a duality

between suffix-based and prefix-based indicial vectors arising from reversal of bit strings.

Definition 4.4.1 Let n be a positive integer. The binarv reversal matrix R, € R

27 ) 2"

is the matriz whose only nonzero entries are ones in row 1 and column j. where the n-bit

binary representation. of i and j are the reversal of each other, i.e.

(B ={ 1 if onli) = (oa(3)F

0 otherwise

0001 0011 0101 0111 1001

0000
1

0010 0100 0110 1000 1010

-~

1011

1100

0<4,j<2" - 1.

1101

1110

1111

1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

R,isa reflection: it is svmmetric. involutary (ﬁﬁ = I, ) and orthogonal (E;Rn = Rf =1,).

e e R?" is the 78 column of the identity matrix I,. then f?nej = ¢; where we write

v((oa(7))F) as J- Therefore for the suffix-based indicial vector z_ 4. we have Rnxw.k.t =

YR k¢ Since R, does not change the 1-bit count and the bit transition count of an n-bit

string. We thus have a one-to-one correspondence between suffix-based indicial vectors in
Sn. and prefix-based indicial vectors in T, ;. and RS, = {Rnz : 2 € 8,4} = Tny. By a
suitable arrangement of the columns of ', we can make Y = R, X. Then

P =

n

21

DY MY = DN X"R)MI(R.X) = D' X" (R. M R.)X




since

The sparsity structure of onM;ft’n is identical to that of M, (the parameter values per-
mute). as Theorem 4.4.1 shows. We will not prove the theorem. but instead illustrate it for
n = 4. Note that for a matrix B € R?"*2"_ BR, is a permutation of the columns of B with
columns ¢ and j interchanged if i =

the rows of B arising from the same interchange of rows. In particular. the remarks hold

for [’;flq and 1~Z4(l';1~i’,4) respectively.

{

v -

-~

Dy =YY = (X"R})(R.X)= X"(R,R,)X = X"X = Dy.

j(0<i,j<2"-1). while R,Bis a permutation of
J

0001 0011 0101 0111 1001 1011 1101 1111
0000 0010 0100 0110 1000 1010 1100 1110
ud ud
uf u
ug
i
u i
ud ol
u) ul
ui ud
uy uy
T
ud ul
ud u}
uj uj
ug ul
u3 i

22




R4(UIRy) =

-

0011

0001 o101 o111 1001 1011 1101 1111
0000 0010 0100 0110 1000 1010 1100  111d
X u ‘
ul ud
4 .
¥ i
2 ui
ui i
u uj
u? ud
ud u}
ul ul
ud )
u? u
3 3
ul ul
.ug 'U,%
u3 uz
[ g u
ud ul
u} uj
u3 uj
ug up
uf uj
ud h
ug u}
ul ud
u} u3
uf ui
uj uj
ug g
u3 u3
v} u}
! & &
ry ( u§ “:1: : u(z, u'{; : u(} ul : u§ ui
\ud uf u; U3 uy u} Uz U3

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111




Theorem 4.4.1 (cf. Theorem 2.4.1. [Hen91))

0
el
Ug

ud
ud woould

ud w2 0,2
wy uy \ [ uz uj ).
up wy )\ ug

o ,0 2 2 1 1 0,3
n o ,0 |° 2 2 |- 1 1 ‘1,3 :

Applving Theorem 4.4.1 to Rnﬁl;;fi’,,,, we have

a a) (b b\ (a7 a! . b1 b1 B

b b ) \e ¢/ \ o=t b )7\ 1 o "

. a b ] a b . b ¢ ] b ¢

Un a=! b1 "\ g1 ! "\ p=1 ! T\ pml - ’

and so Pfl has the same structure as P,g ;- In fact. they are diagonally similar (see Ap-
pendix A).

BMR, = Rl K

4.5 Selected combinatorial results

Before we state without proof some combinatorial results regarding indicial subspaces. we
present some selections to get a feel for the quantitative behavior of our indicial subspaces.
Table 1 gives the cardinality of the indicial basis S, ; and the maximum size of an indicial set
I" .. (with |w| =) for | = 2.4. The latter quantity is by definition equal to the maximum
number of ones appearing in a basis vector in §,;. We see from the table that the indicial
bases have cardinalities which are very small compared to 2%: in contrast. the basis vectors
have a large number of nonzero entries. For example. for n = 30 and / = 2. we approximate
R by the subspace spanned by the 1628 basis vectors in S3g2, the “largest™ of which has

5.95 x 10° ones appearing in it.

n 2" |Sn.2] S’a“: |Iz.k,t| |Sn.al T:}; ) S
jwl =2 fwl = 4

5 32 28 2 32 1

10 1024 148 20 352 6

15 32768 3¢ 400 } 1072 120

20 | 1.05 x 108 | 688 8820 2192 2520

25 || 3.36 x 10" || 1108 | 2.33 x 103 3712 63504

30 || 1.07 x 10° || 1628 5.95 x 10° 5632 1.59 x 108

Table 1: Combinatorial properties of suffix-based indicial sets

In the theorems below. n and [ are positive integers with [ < n.

Theorem 4.5.1 (cf. Theorem 3.1.2 and Corollary 3.1.4. [Hen91]) The cardinalities of all

the nonempty 1-bit suffiz-based indicial sets 17 | .. |w| = 1, are given by:

24




{a) ifw =0:

(1) 1500l = L.
(i) for1<k<n-1,1<t<min(2k.2(n-k)~1),

'(k—l )(n—k—l) :
if t even
t/2-1 t/2

( k-1 >(n—k—1) i t odd
L\ (t=1)/2 (t—1)/2

'Ia.k.tl =

(b) if w=1:

() 1T ol = 1.
(ii) for 1 <k<n-1.1<t<min(2k - 1.2(n - k)),

f(k—l)(n-—k—l) if t even
t/2 t/2-1

k-1 n—k-1> it odd
L\ (2 -1)/2 (t—1)/2 |

Theorem 4.5.2 (cf. Theorem 3.3.1. [Hen91]) Let » be a fized string of length I, and let }’
be the number of 1s in Ww(2)o ---ow(l). and V' be the number of bit transitions in «. The

lI?.k.zl = <

cardinalities of all the nonempty indicial sets I" . .are given by:
(e) if w(1)=0:
(i) lI:ll.k’.t‘I = lv
(ii) fork=1.....n=-0,t=1..... min(2k.2(n -1 - k) + 1),

_ [qn-l+1
2 kkr eaerl = 1oy |-

(b) if w(l)y=1:
(v) ‘Iz.n-l+k'+1.e'! = L.
(it) fork=1.....n=1l. t=1.....min(2k - 1.2(n -l -k + 1)),

— 1n=l+1
I ki ere = 00071

Theorem 4.5.3 (cf. Theorem 3.3.2. [Hen91]) Let « be a fired string of length I. For
n=/[-1.1 (mod4),

. _ <Un—1+1)/2J-2)<[(n—1+1)/2])

max I .l ln=1+1)/4) =1 )\ n=1+1)/4]

25




and forn =1+ 1.1+ 2 (mod 4).

Un—l+UﬂJ-1)<Hn—l+lVﬂ-1)

-Iﬂ. =
max L ( ln—1+1)/4) Lin =1 +1)/4]

Theorem 4.5.4 (cf. Theorem 3.3.3 and Corollary 3.3.4. [Hen91]) The number of nonempty

indicial sets I" | . with |w| =1 is

(n—=1+1)n-1)

> ) < TZ221-1,

2h 1+

and so are the cardinalities of the indicial bases S, and T, . and the orders of the projection

matrices PS| and PR,

Theorem 4.5.5 (cf. Theorem 3.3.5. [Hen91]) The number of nonzero entries in each of
PC, and PR, is
(n=Dn=-1-1)

21+2(1 + 2 )

26




5 Implementation of Indicial Subspaces

We describe in Sections 5.1 through 5.5 an implementation of one cycle (i.e. for fixed n > 3

and ! > 0) of our method of minimal representations. The foci of our discussion will be

(a) the data structures for representing indicial sets I, x: (with |w| = /) and corresponding
vectors in the approximating subspaces span(S, ) and span(7,;). and

(b) efficient algorithms for manipulating such vectors.

Although a vector z in span(S, ;) has 2" entries. at most |S, ;| of them are distinct and our
algorithms for manipulating these vectors (eg. finding ||z||) will exploit this property. Most
of them will take time O(|S,4|) = O(2/-1n?). We emphasize that the basis S, ; is never

explicity represented in our implementation.

5.1 Data structures for indicial sets and subspaces

Total ordering on indicial objects In the preceding development of the theory of indi-
cial subspaces. the ordering of the nonempty indicial sets I, ., with |w| =/ (or equivalently.
the ordering of the basis vectors in S,; and 7,;) was unimportant. However. any imple-
mentation of our method has to choose an explicit ordering and the representation of the
projection matrices PnC_I and PfI depends on it.

To make our discussion uncluttered. we work with triples (w.k.?). |w| = [. rather than
directly with indicial sets 1 ; and basis vectors k.

Definition 5.1.1 4 triple (w.k.t) is legitimate if the corresponding indicial set I k. is
nonempty (or equivalently, =, is a basis vector in S, ;). We define a total ordering <
on legitimate triples as follows: (w.k.t) <; (&' . K. 1), if and only if

fa) v(w) < v(W'). or
(b) v(w)=v(') and k < k', or
(c) viw)=v("). k=kFK and t < t'.

The i** triple in this ordering will be denoted by (wi.ki.t;). 0 < i < |Spyl - 1. For a
legitimate triple (w.k.t). ®(w.k.t) denotes its ranking under <; (t.€. ®(wi k. ;) =1).

We display the ordering for n = 4 and [ = 2. where the nonempty indicial sets I, x;




(lw) = 2) are singletoné.

bw.kt) w kot I
0 00 0 0 {0000}
1 00 1 1 {1000}
2 00 1 2 {0100}
3 00 2 1 {1100}
4 01 1 1 {ooo01}
5 01 2 2 {1001}
6 01 2 3 {o101}
7 01 3 2 {1101}
8 10 1 2 {0010}
9 10 2 2 {0110}
10 10 2 3 {1010}
11 10 3 1 {1110}
12 11 2 1 {oo11}
13 11 3 1 {o111}
14 11 3 2 {1011}
15 11 4 0 {1111}

Induced ordering on prefix-based indicial objects The ordering of the legitimate
triples induces an ordering of the nonempty suffix-based indicial sets I, ;. (|w| =) and the
basis vectors in S, ;. Thus in forming the column projection matrix Prf} = D_'X] XM X
where Dy = X~.X.the columns of X" are the vectorsin S, in the prescribed order. We note.
however, that in showing that the projection matrices P,fl = D,',IY'M;Y (Dy = YY)
and PS, have the same sparsity structure (Section 4.4) we exploited the duality between
suffix-based and prefix-based indicial objects. Specificallv. we assumed that Y = E.X.
where R, is the 27 x 2n binary reversal matrix. Recall that RnZoss = YK jt- and so the
columns of Y must be ordered in ascending order of v(wP). k and t. Just as the development
of the theory of prefix-based indiciai subspaces was simplified by relating it to suffix-based
indicial subspaces using R.. the implementation of prefix-based indicial subspaces enjovs a
similar simplification. In fact. the algorithms that we will develop for suffix-based indicial
subspaces carry over to prefix-based ones with little or no change. Henceforth. we shall no
longer mention the matrix Y. but use the equivalent inatrix ﬁn.X.

Coefficient vectors Before proceeding further with implementation details. we introduce
some terminology that will be useful in the discussion. For a vector g € span(S,, ;). there
is a unique representation of ¢ with respect to the basis S, (under the total ordering <;).
We shall call this representation the suffiz-based coefficient vector for g. and denote it by
g. Note that § € R¥nil and g = X§. We define prefix-based coefficient vectors similarly.
Since S| = |Tn.| by duality. we shall identify R»| with RI7=il, The type of a coefficient

28




vector will be clear from the context.

Encoding the total ordering We now consider the task of encoding the ordering. To
justify our implementation we describe a simple approach and point out its defects. A
straightforward approach is to use the triple (w.k.t). |« = [. as an index. Thus a vector
§ € RIS~ would be stored as a 3D array of real numbers §[0...2' — 1][0...n][0...n — 1].
We note that there are two serious disadvantages to this approach. Firstly. the vector g
requires 2'n(n + 1) words of storage. even though |S, | < 2/=1n(n + 1). More importantly.
not every triple (w.k.t) is a legitimate index and so each access to the elements of array
g requires a check on the values of & and t. In particular. the subroutine which extracts
eigenvalues must perform the check repeatedly.

Our indexing scheme The weakness of the simple approach lies in its noncontiguity
of storage. i.e. there are "gaps™ in the 3D array which are not used. We overcome it by
using an indexing scheme which maps legitimate triples («. k.?7) to the nonnegative integers
{0.1..... |Snal = 1} using the total ordering <;.

Data structures The indexing scheme is realized using two complementary data struc-
tures: one mapping triples to integers. and the other. integers to triples. We first illustrate
the ideas using the example (n = 4. ! = 2) given earlier. Note that for each of the four pairs
of (w.k) having two values of ¢ (namely. (00. 1). (01. 2). (10. 2) and (11. 3)). the value

®(..k.t) -t is constant. We can thus tabulate ®(w.k.t) ~ ¢t in a 2D inder array as shown

below.
r(w)| k=0 k=1 k=2 k=3 k=4
0 0(t=0)|0(t=1.2)| 2(t=1)
1 3(t=1) 3(t=2.3)] 3(t=2)
2 6(1=2) | 1(t=2.3)]10(t=1)
3 11(t=1) 12(t=1.2)| 15(t = 0)

So for a proper triple (w.k.t) with |w| = 2. the rank ®(w. k. t) is given by index[v(w)|[k] +1.

In general. by Theorem 4.5.2. for a fixed « of length / and a legitimate k. the values of
t giving legitimate triples (w.k.t) are “contiguous™. So we can define ® using a 2D array
indez[0...2" = 1][0...n] (i.e. indezr has 2' rows and n + 1 columns. with row subscripts

running from 0 through 2' ~ 1 and column subscripts running from 0 through n):
®(w.k.t) = indezx[v(w)][k] + t.

or
index[v(w)][k] = B(w. k.t) ~t

where ¢ is the smallest value permitted by Theorem 4.5.2. Note that for each « € {0.1}".

not every k in the rauge {0..... n} and t in the range {0..... n — 1} are legitimate. Thus

29




the /index arrayv contains elements which are actually undefined. (in fact. inder is banded
with width n —/+ 1 by Theorem 4.5.2) and this is a reflection of the inherent noncontiguity
of legitimate triples.

The second data structure consists of three 1-dimensional arravs ind_suf. ind_k and
ind_t. each with |S, | elements. mapping an integer i € {0....,|S, | — 1} to the (value of
the) suffix. the 1-bit count and the bit transition count respectivelv of the i*" triple.

In addition to the above two data structures. we have another l-dimensional arrav
Sn.i| = 1] where count[i] gives the cardinality of the i* indicial set.

count[0.. ...

Abstractions for data structures To hide the details of our data structures from the
rest of the program. we provide two “converter™ subroutines. The first subroutine. get_triple.
takes as input an integer i and returns the it triple (w.;.k;.t;): the second subroutine
get_index. takes as input a triple (w.k,t) and returns ®{w.k.t). The subroutines are easily
defined using the data structures.

Initialization of data structures The code in Figure 1 initializes the data structures by
using Theorem 4.3.2 to enumerate the legitimate triples in order. The variable indexr_count
gives a running total of the number of triples enumerated so far. and will therefore be equal
10 |S,.] at the end.

Advantages of Indexing Scheme We remark that our indexing scheme provides a useful
abstraction for indicial vectors. Note that a coefficient vector § € R4l has two interpre-
tations: it can be regarded simplv as an |S, ;|-dimensional vector. or more importantly. it

gives the coefficients of the linear combination for the associated vector g € span(S,):

t'sn.l“l

9= g(i)"rw..k,.t‘- (

=

[

Our indexing scheme provides a clear separation between these two interpretations. By
itself. the array g[...] is just the standard representation of the vector g. and this is the
view seen by the subroutines for extracting the dominant eigenvalues and eigenvectors of
the projection matrices. When coupled with the indexing scheme. g can be regarded as a
coefficient for g in (2). Indeed. we find that for 0 <+ < 2™ - 1,

gli) g[®(u(n=1+1)o---ou(n).K(u).7(u))] where u = a,(i)

glget_index(p(n—I+1)o---opu(n).&(u). ().

Thus we can easily find the value of a component of g given its coefficient vector g.

5.2 Construction of projection matrices

Data structures for projection matrices As was shown in Sections 4.3 and 4.4. the

projection matrices P<, and PR, are sparse with either 2 or 4 nonzeros per column. In fact.

30




variable index_count. . k'. t', k. ¢

index_count — 0

/* Enumerate strings of length ! with leading bit 0 */
for w € 00{0.1}"!

' — K(w(2)o---0wl(l))

t— (W)

ind_su flindez _count] — v(w)

ind_k[index_count] — k'

ind_tlindex_count] — t

index[v(w)][}] — indez_count — t'

count(indez_count] — 1

indezx_count — inder_count + 1

fork=1.....n—1
index|v(w)][k + k'] — indezx_count — (¥ + 1)
fort =1.....min(2k.2(n-1-k)+1)
ind_suf[indez_count] — v(w)
ind_k[indez_count] — k + k'

ind_t{inder_count] — t + 1t

count(index_count] — |187c';"1[
inder.count — indezr_count + 1
endfor
endfor
endfor

/* Enumerate strings of length [ with leading bit 1 */
for w e 1o{0.1}"!

similar code
endfor

Figure 1: Code for initialization of indexing scheme data structures

31




PR, is similar to PC, (see Appendix A) and so we need only P{,. We represent PC, as a
sequence of packed columns. Specifically. we have three arrays col[0...d-1]. row[0...d-1].
and col_proj[0...d - 1], where d = 2142 +(n—=I)}{n—I14+1)/2) is the number of nonzeros in
PS¢, (see Theorem 4.5.5) with row[i] and col[i] giving the position of the i*h nonzero entrv

of P¢,. and col_proj[i] giving its value.

Initialization of projection matrix data structures Theorem 4.3.1 identifies the
nonzero entries of the projection matrices. and is used in Figure 2. which constructs the
projection matrices. The 2D array M[0...3][0...3] holds the sixteen (not distinct) param-
eters of M, as defined below.

i a a b b a~! o1 b-1 b1
.‘"In = (,’n : ; : .
b b c ¢ b=1 p! ¢ttt
The variable matsize counts the number of nonzero entries computed so far.

Applying th2 column projection matrix to vectors We briefly remark on how we
can apply PS¢, on the left and on the right to vectors. Let § € RIS»il. The matrix-vector
product PS 19 is formed by accumulating the linear combination (with coefficients given by
the entries of g) of the columns of P,f_', appropriately scattered: the vector-matrix product

§~PC is formed elementwise by taking the inner product of § with each column of P<,.

5.3 Applying the transfer matrix to approximate eigenvectors

Of interest in measuring the quality of our approximations is the matrix-vector product M,gq.
where ¢ is an approximation to a column eigenvector of M, from the subspace span(S,).
and the corresponding product M;p. where p is an approximation to a row eigenvector
from the dual subspace span(7,;). In this section. we shall consider how we can effectively
compute such products in time O(|Sy|). and represent them in a manner similar to the

approximate eigenvectors.

Action of general duodiagonal matrix [, We first consider the general matrix-vector
product {',g. g € span(S, ). The kev to an efficient computation of {',g is Corollarv 4.2.4.
which describes the action of [, on a basis vector in S,;. Let § € R"ntl be the coefficient
vector of ¢. i.e.

Isn.l'_l
g= Z g(i)zw,.k..t.'
1=0
Then
[Sn =1
(.ngz Z ’g\(i)('.nrw,.k,.t.
=0

ts a linear combination of images of basis vectors in S,; under the action of {,. By

Corollary 4.2.4. each such image is itself a linear combination of vectors in S, ;4+;. Thus

32




variable matsize. i. w, k. t. k', ', row_indez
matsize — 0
for i =0....,|Snl =1
(w.k.t) — get_triple(1)
determine the leading bit y of strings mE =1 1,

/* Compute nonzeros associated with E® */
if (E0 is nonempty)
determine k' and t' such that 2E® = T 0 4 ¢
col[matsize] — i
row_index — get.indrr(2e.k'. 1)
row[matsize] - w.inder
col_proj[m .. ~c| — |E%| * M[2v(w(I})][v(u o 0)] / count[row_index]

matsize —matsize + 1

determine k' and t' such that 2E® + 1 = I o1 400

collmatsize] — i

row.inder — get_index(2w + 1.k, t')

row[matsize] — rouw_indexr

col_proj{matsize] — |E°| * M[2v(w(!)) + 1][v(g 0 0)] / countlrou_indez]
matsize —matsize + 1

endif

/* Compute nonzeros associated with E! */
similar code
endfor

Figure 2: Code for initializing the column projection matrix

33




U'rg € span(S,,.4+1). and we can compute it by building up the coefficients for each basis

vector of Sy, (4.

Data structure for image vectors As in the representation of vectors in span(S, ). we
inpose a total ordering <;;; on the legitimate triples (u.k.t) with |u| = / + 1. and encode
the ordering with similar data structures and converter subroutines. To distinguish them
from the subroutines for the ordering <;. the subroutine converting legitimate triples (u. k. 1)
(luf = 1 4+ 1) to their ranking under the ordering <;4; will be called get_index_prod. and
the subroutine returning the /*! legitimate triple will be called get_triple_prod. In addition.
the array count_prod|...] will store the cardinalites of the indicial sets I, ;. ju} =7+ 1. A
vector h € span(Sy,4+1) will be represented by its coefficient vector kA € RISni+11,

Code for computing the matrix-vector product Figure 3 gives the code for the
subroutine applv_matrix(g.h) which takes as input the coefficient vector g for the vector
g € span(Sn ). and returns the coefficient vector h for the matrix-vector product /,,9. The

array M{..][.. ] holds the sixteen parameters of M, and was defined in Section 5.2.

Applying the adjoint of the transfer matrix We consider the dual matrix-product
M7 g for a vector g € span(7y,). whose coefficient vector is §. Let X; and X, be the basis

matrices associated with the bases S, ; and S, ;41 respectively. Then
RoM7g = (R MR, X1 € span(Snian)
since onM;on is duodiagonal. and so
M;g € Rnspan(Sp.is1) = span( T i41).
The coefficient vector h of Mg is defined by
B Xisrh = Mg = MIR. X

and so
Xiorh = (R M R.)XG.

i.e. h is the coefficient vector of the image of X;g € span(S,;) under the action of the
duodiagonal matrix R, M,:I}n. The code for the corresponding subroutine apply_transpose
is therefore identical to that of apply.matrix. except that the arrav RMR[.. ][...]. which
holds the sixteen parameters of

is used in place of M[..][.. ]

34




subroutine apply-matriz(@.fz)
output h
variable i. . w. k. t. k', t'. image_indexr

for i =0.....|8rus1l =1

~

hli] — 0.0

fori=0..... Sl -1
(w.k.t) — get_triple(?)
determine the leading bit y; of strings in E = I k.t

/* Compute contributions from E° */
if (E° is nonempty)
determine k' and t' such that 2E® = Lok ¢
image_index — get.index(w o 0.k.t)
h[image_indez] — h[image-index) + M[2v(w(!))][v(p 0 0)] * gli]

determine k' and t' such that 2E® + 1 = Lo16 v

image_indexr — get.indez(w o 1.k'.1')

E[image-inde:c] — E[image-indcz] + M[2v(w(l)) + 1)[v(u 0 0)] * gli]
endif

/* Compute contributions from E! */
similar code
endfor

Figure 3: Code for applying the transfer matrix




5.4 Computation of inner products

Various quantities of interesi derived from subspace approximations require the computation
of inner products. eg. norm of a vector. angle between two vectors. and the generalized
Ravleigh quotient. In our case. the vectors could come from four different subspaces of R*":
span(Sy ) and span(7, ;) containing approximate column and row eigenvectors respectively:
and span(Sy,+1) and span(7, ;41 ) containing the images of these approximations under the
action of the transfer matrix M, and its adjoint 3> respectively. Our goal in this section

is to describe efficient methods for computing the inner products.

Types of inner products Let §,.5; € R/~ be coefficient vectors for vectors in either
span(Sy ) or span(7, ;). and let ;21.712 & R!Sn141l be coefficient vectors for vectors in either
span(Sn.+1) and span(7,41). Depending on the combination of the subspaces containing
the two vectors whose inner product we wish to compute. we have one of the 1en subroutines
below. Here X; and .X;4; are the basis matrices associated with the bases S, ; and S, )

respectively.

(a) col_coldp(g1.92) = (X191 X1G2)
- intier product of two approximate column eigenvectors

(b) row_rowdp(g;.¢2) = <1~€n.\'1§1.1~2n_Y1§2>

~ inner product of two approximate row eigenvectors

{c) col_row.ip(gy.g.) = <X1§1.R,,_\’1§2>
- inner product of an approximate column eigenvector and an approximate row eigen-

vector

(d) colp_colp_ip(izljzg) = <.\'[+1/A21.X1+1772>

- inner product of images of two approximate column eigenvectors

(e) rowp_rowp_ip(/All./Az-z) = <§n‘\'1+17zl.l~2n_\]+1?)2>

- inner product of images of two approximate row eigenvectors

(f) colp_rowp_ip(hy.ha) = <X1+1h1.Rn_X'1+1h2>
- inner product of images of an approximate column eigenvector and an approximate
row eigenvector

-~

(g) col_colpip(gi.hy) = <X1§1..\'{4_1IA11>
- inner product of an approximate column eigenvector and image of an approximare

column eigenvector

(h) row_rowp_ip(ﬁl.;n) = <I§n‘\'1§1.f{n;\]+17)1>
- inner product of an approximate row eigenvector and image of an approximate row

eigenvector

36




-~

(1) colrowpip(gy.hy) = <_-\'1§1.§n_\'1+1h1>
- inner product of an approximate column eigenvector and image of an approximate

row eigenvector

(j) row_colp_ip(§y.h2) = (Rn.\',gl.x,ﬂhl)
- inner product of an approximate row eigenvector and image of an approximate
column eigenvector

The reader should note that the arguments to the subroutines are coefficient vectors. i.e.
the inner product of two vectors is computed from their associated coefficient vectors.

It is easily verified (using the orthogonality property é;én = I,,) that subroutines {a)
and (b). (d) and (e). (g) and (h). and (i) and (j) are identical:

e row_row_ip(g1.g2) = col-col ip(gs.52)

-~

. rowp_rowp._ip(zl.zg) = colp_colpJp(Tzl.hg)
. row.rowp.ip(@l.EI) = Col_colp_ip(ﬁl.lAzl)
o row_colp_ip(§;.hy) = col_rowp_ip(§i.h1)

Thus we have six different tvpes of inner products to consider.

5.4.1 col_col.ip(g;.g2)

We begin by considering the simplest inner product. that involving two vectors gy.g2 €
span(Sy.;). whose coefficient vectors are g; and g, respectively. i.e. g; = X;g1. g2 = X,90.

Simple approach The straightforward approach to computing the inner product of g,
and ¢- is to accumulate it elementwise. We saw in Section 5.1 how we can find the value of
any component of ¢g; (or g2) from its coefficient vector g; (or g2). Thus we can evaluate

2" -1
(91-92) = D g1li)gali)
1=0
by accessing the appropriate entries of g; and g,. This simple approach has one serious
flaw: it takes time O(2") even though ¢g; and g, each have at most |S, | < 2/~1n? distinct

entries.

Efficient computation The key to an efficient computation of (g;.g;) (and the other
inner products that we shall consider) is to choose an appropriate basis and to express the
computation in terms of that basis. The simple approach (implicity) uses the standard
basis: the efficient approach uses the “natural™ basis for g; and g;. namely S, ;. Indeed.

(91.92) = (X191.X1g2)

37




subroutine col_col_ip(gy.g=)
variable i. ip
ip—20
fori=0....,|8m4] =1

ip — ip + count[i] x gy[t] * go[7]
endfor
return ip

Figure 4: Code for subroutine col_col.ip(g;.g2)

subroutine colp-colp-ip(ﬁl.ﬁg)
variable i. ip
tip—0
for i =0.....|8nu41] =1
ip — ip+ count_prod[i] x hy[i] * hy[i]

endfor
return ip
Figure 5: Code for subroutine colp-colp_ip(g;.g2)
= XX
“Sn.ll_l
= > §u(0)gAi)|Lu, k1] (3)
=0

since

X7 X7 = diag(|Tug ko to|l*s 1T by a2 -2 2)

where (w;. k;.t;) is the {*! triple under the total ordering <; described in Section 5.1. The
sum (3) takes time O(|S,|) and translates easily into the code in Figure 4 for the subroutine

coi-col.ip.

5.4.2 colp-colp-ip(?zl h2)

This inner product is similar to the previous one. except that the vectors now come from
span{Sy +1) and so the appropriate basis to use is S, 4. We remind the reader that
count _prod[i] gives the cardinality of the :*" nonempty indicial set I, s, with || = /+1 under
the ordering <;4; (see Section 3.3). The code in Figure 3 clearly takes time O(S,.+1) =
0(2'n?).

38




5.4.3 col.colp.ip(g.h)

This inner product involves two vectors from different subspaces: g € span(S, ;). whose

-~
-~

coefficient vector is g. and h € span(S, 41). whose coefficient vector is h. i.e. ¢ = X|g.
h = X;.HB. We remind the reader that S, ; and S, 141 consist of basis vectors associated
with nonempty indicial sets I, with [w] = ! and |« = 7 + 1 respectively. Thus S, 41
is a “refinement”™ of S, ;. and span(S,) C span(S, i+1). So the natural basis in which to
express the inner product (g,h) = <X1§._\'1+171> is Sni41-

The main task is to represent the vector g € span(S,,;) with respect to the basis S, 4.
As usual. we let (w;.k;.t;) with lel = [ be the _7'th legitimate triple under the ordering <;.

Then by definition.
lsn,l"l

9= Y G)Ta, k., (4)

=0
Let (p;.k!.t}) with |i;| = I + 1 denote the i*} legitimate triple under the ordering <;4;. We
seek the coefficient vector § € RISrt1l satisfving:

[Sni+1l-1

g= Y §lie, (:

1=0

o
~—

Consider the basis vector z,, ;s appearing in (5). Since S, 41 is a refinement of S, ;. the

coefficient §(!) is equal to g(7) where j satisfies:
(wj kjtj) = (pi(2) o --opi(1 + 1). k. 11).
In terms of our indexing functions,

J = getdindex(p;(2) o ---o pi(l + 1). k. t}).

1

Having determined the coefficient vector of g with respect to the basis S, ;4;. we can
compute the inner product of ¢ and h in a manner similar to the previous cases. The code

is shown in Figure 6 and takes time O(Sn 41) = O(2'n?).

5.4.4 col_row._ip(g:.32)

This inner product is needed for the error estimates. It involves two vectors from dual sub-
spaces: g; € span(S, ). whose coefficient vector is §;. and g, € span(7, ;). whose coefficient
vector is gq. i.e. g1 = X(9y. g2 = RHXI§2. This inner product is more difficult to compute
than any of the previous three because the two subspaces are not related in a trivial way.
i.e. thev do not satisfy any containment relations. There are two very different cases to
consider: 21+ 1> nand 20+ 1 < n.

CaseI: 21+ 1> n

39




subroutine col _colp.ip(g. h )
vartable i. ip. p. k. t
ip — 0
for 1 =0..... 'Sn.H—l, -1
(n.k.ty — get_triple_prod(i)
ip — ip + count_prod[i]  h[i] *
glget-index(pu(2)o - o u(l+ 1).k,t)]
endfor
return ip

Figure 6: Code for subroutine col_colp-ip(_(},fz)

We shall show that in the inner product
27_1

(91-92) = D_ g1(i)gali). (6)

=0
the products gy{i)g2(1) {0 < ¢ < 2™ — 1) could all be distinct. and so there is no better way
to compute the inner product other than the sum in (6).
Here is the reason.

Lemma 5.4.1 For 0 < ¢ # j < 2" — 1. there ezist g1 and g, such that g,(i)g2(i) #
g1(7)g2(J).

Proof. Since 2/ + 1 > n. a string u of length n is uniquely determined from its /-bit suffix.
its [-bit prefix. and its 1-bit count. Thus o,(7) and ,{j) either have different I-bit suffixes.
different I-bit prefixes. or different 1-bit count. So ¢,{i) and o,(j) cannot both be in the
same suffix-based indicial set I x (with [w| = [) and in the same prefix-based indicial set
L. k.t (with |w| = 1). Therefore. g,(7) and g1(7) are not constrained to be equal. and neither
are g3(¢) and g(J). and there exists g; and g such that g1(i)g2(7) # ¢1(7)g2(7). O

Equivalently, the smallest subspace of R?" containing both span(S, ;) and span(7T, ) is
R?" itself. but the proof is not trivial.

The code in Figure 7 computes the inner product for the case 2/ + 1 > n in time O(2").
We remark that we do not expect this case (i.e. I > (n — 1)/2) to occur often as we would
not typically have ! that large.

Case II: 2I+1<n

We seek a common basis in which to express g; = X;g; € span(S, ;) and g2 = Eangg €
span(7,;). Since the basis vectors in S, and 7., are associated with suffix-based and
prefix-based indicial sets respectively. the common basis should have vectors associated
with more general indicial sets involving both suffixes and prefixes.

40




subroutine col_row_ip(g;.gz2)

variable i. ip. w, k. t

tp— 0
fori=0....,2" -1
"""’an(i)
k = k()
t = 1)

ip — ip + Gi]get.index(w(n—=I+1)o---ow(n). k.t)] *
d2[get_indez(w(1)o---o0w(l). k. t)]
endfor
return ip

Figure 7: Code for subroutine col_-row_p(g.g2). case I

General indicial sets Formally. for 0 < k < n. 0 <t < n-—1and p,u; € {0. 1}1. we

define a general indicial set to be
G, k= {u€fo. 1}" s k() = k. T(u) = t. py is a suffix of p and py is a prefix of u}.

In analogous fashion to suffix-based indicial sets. we can define general indicial vectors
%y ko and the general indicial basis V,, ;. For a complete discussion of general indicial
sets. see Sections 2.6. 2.7 and Appendix A of [Hen91].

Notethat for 0 < k< n. 0<t <n—lwe {0.1},

Lokt = Z Spg .kt
u2€{0.1}

and

Rnrw.k.t = Z Rn:ul w.k.t
w1 €{0. 1}

= Z SR (u1)R okt

u1€{0.1}

= Z :w'R,ul.k.t'
w €{0.1}
So the coefficient of 2, ,, k.t in the representation of g; with respect to the basis Vy, 1, is g1(¢)
for the i*M triple (w;.k;.t;) = (p1.k.t): and the coefficient of z,, ., k. in the representation
of g, with respect to V, 1 is §o(j) for the jtP triple (wj kjt;) = ((p2 )R.k.t). Since the
basis V,; is orthogonal, the inner product (g;.g,) is the summand in (3) adapted to the

basis an'l.

41




Enumeration of general indicial sets To accumulate the sum. we need to enumerate
the basis V,, . or equivalently. the nonempty general indicial sets. This is accomplished

through the many-to-one correspondence below.

T

Lemma 5.4.2 Let § be the collection of nonempty general indicial sets G}, , ;. (1l =
|u2| = 1) and T be the collection of nonempty 1-bit suffir-based indicial sets I:]ft“'? (J«l = 1).
The function f : G — I given by
=-20+42
f(GZLHl kt) = 121(1)—k'-t’

where

kl

k= k(uz(l)o - opa(l = 1)) = s(p1(2) o -- -0 ua(l)).
and ' = t—rT(ug) - T(H1)-

preserves cardinalities and gives a 2%~2-to-one correspondence between G and T.

Proof. For a string 1 € G}, , .. dropping its leading /-1 and trailing / -1 bits transforms

it into a string in Izl'(zll)"'k% o+ In addition. each string in I:l'(zll)"'k% , is uniquely obtained from
astring u € G}, , ;. in such a manner. Thus f preserves cardinalities. Let I+ er.

By Proposition 4.1.4. the strings in I:‘,\?l?,' 2 have a common leading bit. which we shall call
w. It is easily verified that
USRS = G, ket #o= g2l w = (1)

k=k+r(ua(l)o---oua(l = 1))+ &(u1(2) 0 -0 pa(l))
and t =t/ + 7(p2) + 7(p1)}

and so f gives a 22/~2.to-one correspondence. O
The code in Figure 8 uses Lemma 5.4.2 to enumerate the nonempty general indicial sets.
It is clear that the code takes time

O(2% Y 8n-21421]) = OR¥ 22+ (n=21+2)(n=-20+1)))
= O(2%-%p2).

5.4.5 colp_rowp_ip(h;. Eg)

This inner product involves h; € span(S, +1) and hy € span(7n41). whose coefficient
vectors are Bl and 52 respectively. It is similar to the previous inner product col_row.ip.
with case I now occuring when 2(/ + 1) + 1 > n and case II when 2(/ + 1)+ 1 < n. For
case 1. the general indicial sets involved have suffixes and prefixes of length / + 1. and the
~generating” 1-bit suffix-based indicial sets are the nonempty I:'k?,’ lw] = 1. The code for

col_row ip carries over mutatis mutandis.

42




subroutine col_row_ip(g;.ga)
variable i. ip. p, py. pa. k. t. k"t cent. indexl. index?
-~ 0

/* Enumerate general indicial sets associated with ISB%“ */
for uy € {0.1}?
for py € {o. 1}1-1
k' — k(p2) + k(1)
t— 7(p2) + T(p2(l = 1)00) + 7(0 0 py(1)) + (1)
inder] — get_inder(Oo uy.k.t)
inder? — get_index((uz 0 0)R. k. 1)
ip — ip+ gi[indexl] x §y[index?2)
endfor
endfor

/* Enumerate nonempty Ig_kil'*z. k>0%*/
fork=1.....n=21+1

fort =1..... min(2k.2(n-20+1-k)+ 1)
t— '18.—k,2tl+2|

if (tiseven)yu — O else y — 1
/* enumerate associated general indicial sets */
for uy € {0.1)/~!
for pa € {0.1}7
k™ — k(p2) + k + £(p)
t'— 7(p2) + (2l = 1o p) + ¢ + 7(00 py(1)) + m(py)
inderl — get_index(0o uy.k.t)
indez? — get_index((pg o p)R. k. 1)
ip — ip+ cnt * Gy [index]] x go[index?2)
endfor
endfor
endfor
endfor

/* Enumerate nonempty I'l‘jft’”. k<n-204+2*/
similar to code for nonempty Igff“, k>0

n-2+2 */

* e : :
/* Enumerate general indicial sets associated with I7%%, 2.0

similar to code for 135_2(;” X/

return ip

Figure 8: Code for subroutine col_row_ip(g;.g2). case II

43




5.4.8 col_rowp_ip(§.h)

As in Section 5.4.3. this inner product is similar to col_row_p. The vectors ¢ and h belong
to the subspaces span(S,;) and span(7,;+1). and their coefficient vectors are g and h
respectively. Case I occurs when /+(/+1)+1 > n and case Il when /+(/+1)+1 < n. For
case I1. the general indicial sets involved have suffixes of length / and prefixes of length /+1.
and the “generating”™ 1-bit suffix-based indicial sets are the nonempty I:’,"ki[“ .jw}=1. The

code for col_.row_ip carries over mutatis mutandis.

5.5 Computation of residual norms

Associated with an approximate eigentriple (7. g. p) are the residuals M, g—7¢ and M p~7p
for the approximate column eigenvector ¢ € span(S,) and the approximate row eigenvector
p € span(7T, ) respectivelv. Since M,q € span(Sn41) and M;p € span(7, ;41). and 7¢ €
span(S,.) and xp € span(7, ). we shall therefore consider the more general residual norm
subroutines below. where § € R/Sn4l is a coefficient vector for a vector in either span(S, !
or span({7, ). and h € RISni+1l js a coefficient vector for a vector in either span(Sp.+1) or

span(Tni41):

(a) col_residual(g.h) = ||X1g — Xi+1h]|
- norm of the difference between an approximate column eigenvector and its image

(b) row_residual(ﬁ./;) = ]|1~2,,X,§ - R,,.X]Hi;“

- norm of the difference between an approximate row eigenvector and its image

We remind the reader that X; and X4, are the basis matrices for S, ; and S, 141 respectively.

Since multiplication by orthogonal matrices preserves the spectral norm.

row residual(g.h) = [|RnX1§ = RaXi41h]
| Ba( Xi§ ~ Xpsah)]
X1§ = Xisahl)

= col-residua.l(_fj.?z}.

and so we need only to consider the subroutine col_residual.

The subroutine col_residual is very similar to the subroutine col_colp_ip. Both take as
inputs coefficent vectors g and h for vectors g € span(Sy ;) and h € span(7, ;) respectively:
the inner product of ¢ and h is the sum of the product of corresponding entries. while
lig = h}|* is the sum of the squared differences of corresponding entries. The code for
col.colp-ip carries over with multiplication replaced by taking the square of the difference.
and is shown in Figure 9. The subroutine col.residual therefore has the same order of

running time as that of col.colp.ip. namely C(2'n?).

44




subroutine col_colp_ip(§.F)
varwable i. ip, p. k. t
p—0
fori=0.... ,|Shi4] -1
(p.k.t) — get_triple_prod(i)
ip — ip + count.prod[i) x {h[i] - §lget_indez(u(2)o---o ull+ 1). k. 1)))?
endfor

return ip

Figure 9: Code for subroutine col_residual(§. k)




6 Extracting Information from the Projections

The method of minimal representations requires an efficient procedure for calculating the
Perron root and the dominant (positive) eigenvector of P,f,. The technical question is
whether there are any algorithms good enough to make each cyvcle (! — / +1). in particular
the final one. of tolerable duration. Since there are at most four nonzeros per row and

221=1 multiplications and the same

|Sni] & n*2' rows the formation of P,E,I requires 4n
number of additions. It is customary. these davs. to ignore the differences between +. —. x.
/ and to estimate simply flops (floating point operations). Thus z — Pf,:r needs 8§n22/-1
flops. With no difficulty we can apply this matrix-vector product m times and so work with
the operator (P,E,)"l to obtain more rapid convergence.

As the temperature parameter in the Ising model approaches a critical (phase change)
value the two largest eigenvalues of A, approach the same limit and. unfortunately. the
two dominant eigenvectors also converge. In order to be able to take this situation in its
stride. without serious degradation in performance. our algorithm is required to produce. in
all cases. the two largest (positive) eigenvalues and the right and left eigenvectors for both
of them.

The simplest candidiate is the block Power Method with a block size of two. We have
implemented it but found that it lags further and further behind the Lanczos algorithm as /
increases. We will not describe that method here. Some of our readers may not be familiar
with the Lanczos algorithm but we do not wish to digress into a detailed exposition of it
here. See [Wil66]. [GvL89] or [PTL83] for that. What follows is a high level commentary
on our use of the Lanczos algorithm.

Imagine that k steps of the Power Method are taken and each computed vector is saved.
Imagine the best approximation y to the dominant eigenvector that can be made by taking
an appropriate linear combination of all k vectors. In principle the Lanczos algorithm
computes y without saving all ¥ vectors. This last statement is not strictlv correct when
the linear operator (or matrix) that generates the power vectors is not self adjoint but it
gives an idea of the strength of the method. In particular one can see that the method is
not strictly iterative because when k equals the order of the matrix. if not before. then y is
the Perron vector.

What the Lanczos process does for a nonsyvmmetric matrix is the following. It takes two
starting vectors #; and v; which must be supplied by the user. By the end of Step j it has

computed four matrices. each with j columns:

U,=(uy....ouj) flug]l = L= 1.0 .. J-
‘-J = (Ul.....l‘j).
T, is tridiagonal (entries given later). and

o]
<

|

&

o
S
£

3
<

46




together with two extra vectors r; and s;. In exact arithmetic. if no breakdown occurs.
rurr = T hO— .
IJ‘[‘J—QJ a;nd‘]'Pn'lLJ—T_,.

Moreover. by step j. the vectors uy,....u;_2 and vy.....v;_; are no longer needed and are
discarded.
At this point there must be a test to see whether another step is needed. In our

application we compute the two largest eigenvalues of the pair (7,.Q,):
Tigi = Q;g:6;. 1=1.2.

If 8, and 6, have settled down to the required accuracy (we demand 10 or 12 decimal figures
in agreement with #; and 6, at the previous value of j) and both are positive then we stop
and compute ¢; and g;. otherwise the Lanczos process takes another step.

We do not need to describe what goes on in one step. It suffices to note that its overhead
(bevond the matrix-vector product) is 42% of the overhead of the block power method and
1.8 times the overhead of the simple power method.

The matrix QJ']TJ is an oblique projection of P¢; and the Lanczos method needs an
auxiliary procedure to compute the wanted eigenvalues of a tridiagonal matrix. Thus all
Lanczos is doing is to provide a tridiagonal approximation to Pf:,. We use a modified Newton
iteration that consumes only 2.5% of the total time required by the Lanczos process. We
say a little more about it later.

Let us suppose that the j*h step did pass the test and so 6; and 6, are accepted as the
largest two eigenvalues of P,E ;- What remains to be done? First one computes g, and g;.
the eigenvectors of (T,.Q;). They provide the coefficients for the approximate eigenvectors
of PS,,

j J
91 =3 uigii) and G2 = Y uigald)-

=1 =1
However we have discarded the earlier u;’s and v;'s and cannot form these sums. So we
run the Lanczos process again. with the same starting vectors. and this time through we
accumulate the two sums before discarding each Lanczos vector. Remember that these
vectors are of dimension n?2/~! not 2". This vields §; and g,. Since P,f, is similar to Pg,
we can compute the approximate row eigenvectors at little extra cost from {v;.....v;}. We
need these extra vectors for our error estimates.

There are several aspects that we have glossed over.

1. Occasionally one of the « values comes too close to zero and we then abort the Lanczos
run as a failure. pick new starting vectors and restart. So far the second run has
always succeeded.

2. Newton's method applied to the characteristic polvnomial of our tridiagonal is guaran-
teed to converge from a starting value greater than the dominant eigenvalue but it

47




can. in general. be dreadfully slow if the starting value is not quite close to the target.
Since we know the entries of Pf:l we compute ||PS, |, initially and start there. This
is the right choice for small values of j but is too cautious in the later stages when 6,

has settled down to two or three decimals.

3. An unpublished result of W. Kahan which shows that the iteration that doubles the
Newton correction can never jump over the largest stationary point. So we double

the Newton correction until there is a sign reversal in the Newton correction.

4. There is an algorithm for evaluating the Newton correction nicely when the matrix is
tridiagonal [PNOS83]. It avoids the rescaling feature that is the curse of the three term

recurrence for the characteristic polynomial and its derivative.

In closing ‘ot us return to the big picture. OQur Lanczos code could be improved in a few
ways should the need arise. Most of the Ising model computation is spent in this section.
We have made a few experiments with m. the power of P{, to be used in Lanczos. The
choice m = 2 is much better than m = 1 but, for reasons we do not fully understand 3 and
4 are better than 5 or 6 in reducing the flop count for the Lanczos run. We cannot give a
simple expression for the cost of computing the largest eigenvalue of PS, together with its
eigenvector because the cost depends quite strongly on the temperature of the Ising model
and we have concentrated our values near the critical one. Our algorithm appears to be
linear in |S, |. the order of Pf:l. and that is an important factor in the usefulness of our
approach.

We have made a few experiments with the choice of starting vectors u; and »; in the
Lanczos method. Using eigenvectors from the previous value of [ offers some improvement

over random starting vectors.

48




7 Error Estimates

An essential ingredient in the method of minimal representation is a reliable estimate of
the accuracy of the approximations derived from the current projections. As explained in
Section 5.3. we can compute the action of the projection on our approximate eigenvector
exactly. in the absence of roundoff errors. and so obtain residual vectors {defined below)
and their norms. We snow below how to use these and related quantities to obtain the
dominant term in a power series expansion for the two eigenvalues we seek.

Here is a standard result from perturbation theorv for non- self-adjoint matrices.

Theorem 7.1.1 Let A be a simple eigenviaue of B and let r and y* be any right and left
eigenvectors for A

Br = zA. y"B = Ay,

For small enough perturbations E there is an eigenvalue u of B + E such that
y*Br

yrz

+ O(||E|)®).

H—A=

It is customary to define a condition number for A by

cond( ) = —-—}—
yrx

In our application we compute. via the Lanczos process. an approximate triple (7. ¢.p")
with ¢ and p of norm 1. We also compute residual vectors

r=Mq—qr.s=M"p— pr.
Our estimate turns on the following result we established in [KPJ82].
Theorem 7.1.2 (7.q.p") is an ezact eigentriple for a matriz M — E where
E=r¢" 4+ pS™ - pug”

with
vi=sg=pr=p Mqg-pygr.

Our trick is to consider M = (M — E)+ E as a perturbation of M — E. If E is small

enough then, by the theorem just quoted. there is an eigenvalue { of M satisfving
¢~-7=p Eq/p’q+ OUIE|?)

but
pPEg=p'r+sqg-v=u
and. by definition.

P Eq/pq=p-~

49




where
p:=plg.p ) :=p Mq/pq

is the generalized Rayleigh quotient. Moreover

IA

£

lirg™ll + llps™ll + llpwg™]
(el + llsit + T

H

All quantities in the expressions given above are computable. W Licu || E|] is small enough.

we can safelv use the difference
lp = 7|

as an error estimate for p as an approximation to the partition function per spin. We
can terminate the sequence of cvcles when p and = agree to the desired number of decimal
figures. At that time we will have discovered the minimal representation (within our family)
of M, that gives the required accuracy.

For small values of [. || E|| may not be small enough for the linear term p— = to dominate

the rest of the error.




8 Numerical results

Here are the results {from a preliminary code using the nonsymmetric Lanczos algorithm.
For the hardest case. n = 30 and temperature within 3% of critical. it took ahout 20 seconds
on a Sparc station to obtain the partition function to 3 decimal digits. and about 5 minutes
to obtain 5 decimal digits. In the tables below. GRQ is the generalized Rayleigh quotient
y M, x/y"x. The temperature T = 1.6 is deep within the ferromagnetic region. T = 2.2 is

within 3% of the critical temperature.

/ approximation GRQ dim  time (s)
2 33189867614 (2.7 x 107%)  3.5180822267 (—-1.8 x 107%) 148 0.8
3 3.5189842995 (2.9x 10~7)  3.3180%37782 (=2.4x1077) 232 1.3
4 3.3189839756 (—3.8 x 107%) 3.5189839519 (—6.2 x 107%) 352 2.0

Table 2: Results for n = 10. B = 0.0001. T = 1.6 (true eigenvalue = 3.5189%40135)

{ approximation GRQ dim  time (s)
2 2.3925207946 (2.3 x 1071) 2.5922407533  (=5.1 x 107%) 148 0.8
3 2.5923360346 (4.4 x 1077) 2.3921803640 (—=1.1 x 1071y 232 1.3
4 2.3922660120 (-2.6 x 107%)  2.3922266644 (—6.6 x 107%) 352 2.4

Table 3: Results for n = 10. B = 0.0001. T = 2.2 (true eigenvalue = 2.3922922453)

O = e Y~

approximation
3.5189802741
3.5189780552
3.5189775223
3.5189776100
3.5189776241
3.5189776408

GRQ
3.518975987R
3.5189731775
3.31897VVH25
3.5189775601
353189776145
35189777184

approximation - GRQ dim
1.3 x 1079 GRS
4.9 % 107° 1232
-2.3x 1077 2192
5.0 x 1073 3872
9.6 x 107 6784
—-7.8x 1078 11776

Table 4: Results for n = 20. B =0.0001. T = 1.6

time (s)
2

5.2
8.3
.0

el R
[t 1 I |




=1 Oy O e W N~

approximation
2.5875164697
2.3873539732
2.3872924943
2.58G8830538
2.3872576018
2.5872475229

Table

approximation
3.5189795036
3.5187421095
3.5189765962
3.5189754869
35189767326
35189774542

GRQ
873011057
HRT1IR52423
DRT2247RKR
AHR69016769
ART2809894
H8T2981335

[S- S AVER (VR N 8

3: Results for

GRQ

3.5189277829
3.5187271685
3.5189734194
3.5189630814
3.5189765436
3.5189775232

Table 6: Results for

approximation
2.3865877396
2.5864495960
2.5863989389
2.5863738510
2.5863633205
2.5863635130

GRQ
864247904
3863367635
HR63409514
5863429058
2863620747
DR63831549

(SR SR N N S )

approximation - GRQ
22 x 1071
1.7 x 104
6.8 x 1072
-1.7x 107°?
-2.3x 1077
-3.1x 10~%

dim
ORR
1232
2192
3872
6784
11776

n=20.B=0.0001.T =22

approximation - GRQ

52x 100
1.5 x 1077
3.2x 1078
1.2 x 1077
1.9 x 1077
-6.9 x 1078

dim
162N
3032
5632

10432
192064
35456

n=30.B=0.0001.T7=1.6

approximation - GRQ
1.6 x 1074
1.1 x 10~
5.8 x 1077
3.1x10°°
1.2 x 107°
-2.0x107?

dim
1628
3032
5632

10432
19264
33456

Table 7: Results for n = 30. B = 0.0001. T = 2.2

time (s)

time (s)
11.8
16.6
50.9
101.5
213.3
472.3

time (s)
21.1
17.5
383
64.3
139.1
316.5




9 Comments on the Ising model

The model arose in Statistical Mechanics and consists of a regular grid whose vertices are
considered to be ‘sites” that can be in exactly one of two possible states. In the original
version [Isi23] each site held an orientable particle that could have its spin u parallel to the
external magnetic field (¢ = +1) or antiparallel (¢ = —1) to it. Another application has
p = +1 if the site contains an atom of type A and y = -1 if it contains an atom of tvpe
B. In studying gases p = +1 if a site is occupied by a molecule or g = 0 if it is empty. An
excellent introduction to the Ising model targeted at a general audience is [Cip37].

Early work focussed on 1D lattices but the subject really came to life in 1944 when
Onsager [Ons44] derived an exact closed form expression for the partition function (see
below) for an infinite 2D grid with no external magnetic field. This expression exhibited
the desired singularity that signals a critical temperature 7. at which a phase transition
occurs. Specifically the residual magnetization My(T') that remains when the external
magnetic field is turned off is positive and decreases steadily to zero as T — T, from below
but simply vanishes for all T > T..

Exact solutions for nonzero magnetic fields have not been found so far and a number of
researchers have turned to approximations. There are two main approaches.

The combinatorial method uses an expansion of Zy. the partition function for N sites.
that involves for its r*P term the total number of subgraphs in an N-node graph with
exactly 7 edges subject to certain constraints. Considerable effort has gone into counting
these graphs but we shall sav no more on this topic. See {Kac68] for further discussion.

The algebraic. or matrix method is based on the creation of a matrix whose spectral
radius (the largest magnitude among the eigenvalues) vields the partition function per spin
[KW41]. This is where our contribution applies and we now turn to the partition function
and the related transfer matrix. The construction that we describe will not vield the transfer
matrix A, that we have used. but instead produces one that is similar ‘in fact. it gives
Rn M; Rn). It has the advantage. however. of being simpler to understand.

Suppose that the grid contains N sites and is subject to an external magnetic field of
strength B. The interaction energy associated with a spin configuration p = (ug..... Uy -1)
is defined by

E(py=-J Z By = !JBZM-
[ 1
neighbors
Here each u; = £1. J is the coupling constant giving the strength of the spin-spin inter-
actions and g is the magnetic moment of each spin. Usually. neighbors is interpreted as

nearest neighbors but broader definitions are possible.
The “partition function per spin” at temperature T is defined by

all

configurations

33




for an N-site grid and k is Boltzmann's constant. Several quantities of phyvsical interest

can be expressed in terms of z. By Boltzmann's law (e~ EWI/&T) /N

is the probability
of occurence of configuration u at temperature 7. The free energy per lattice site at
temperature T is —kT log > ar 1 the magnetization per spin is m = kTg%log: [Tho79).
Theorists somnetimes normalize g the magnetic moment of each spin to be 1 and for that
reason we have omitted it as an explicit argument for =.

The power of the algebraic approach comes from the introduction of a matrix whose
dominant eigenvalue is exactly z,(J, B.T) for a particular semi-infinite lattice depending
on n. We indicate briefly how this may be done.

Start with a rectangular grid of sites with n rows and N/n columns. Let Zn(J.B.T)
denote the total partition function (i.e. z2) for this grid. There are several matrices that
can be associated with this situation. some symmetric, others not. We do not know which
will prove to be most useful but describe the one with the fewest nonzero entries. the
duo-diagonal transfer matrix M,.

In order to remove troublesome boundary conditions the sites are supposed to lie evenly
spaced on a wire wrapped round an inner tube as in a solenoid. There are n sites per turn
and the last site. N — 1. precedes the first site. 0. There are good reasons for counting like
a computer scientist since we can now sayv that we have a chain of sites of period N and
the nearest neighbours of site j are simply sites j £ 1,j £ n mod N. uniformly for all j.
0<7< AN,

The extreme sparsity of M,, comes from an apparently wasteful redundancy in expressing
the partition function. For the moment we suppress g. J. B. T and let Z,(j. ) denote the
partial partition function over sites 0.1.2.....j+ n — 1 except that the last n sites are fixed
at the values & = (fig..-.,fin~1). Now add just one more site and observe. in detail. how
Zn(j + 1.7) relates to Z,(j,2). Using the explicit form of E given above

Zalj+10)= Y D Y mB ) Zalion)

uo=x%1 Hn-y=%1
where. using the Kronecker delta symbol.

63.7.,-1 ~op—1{pottn-1)

m(ﬂ-,u) = 6_0/_11 61‘/1#2 o .61771—2“"-1 €

with 8 = gB/kT.~ = J/kT. Since U, and g4, indicate the spin at the same site the

term 6 is hardly surprising. This is the redundancy mentioned above. If we wrote

Umm41

the 2" values Z,(j.u) as a column vector Z-J- we would have
ZJ‘+1 = ‘MHZ]‘

and the (7. u) entry of M, is m{¥. u). The careful removal of boundary conditions has made
M, independent of j: the recurrence has constant coefficients. After N applications of M,

we have covered the full grid. It follows. after some thought. that the (7. ) entry of M, is



exactly the contribution to Z,(N.J.B.T) when a fixed pitch (i.e. turn on the torus). sav

the first. is fixed at the configuration . So

A'S

-~ —

Z(N.J.B.T)
Y (MY )

14

trace MY .

M, has the nice property of being a nonnegative irreducible matrix and so. by a theorem

of Perron. has a positive eigenvalue A; called the Perron root, that satisfies

By standard results in matrix theorv and

I/\]l < Aq.

zn(J.B.T)

j>1.

analysis.

(trace ;M,‘lv)l/N

=1

A as N — .

Convergence may be very slow but since the limit is obtained analvtically the rate does not

matter.

In order to produce a specific matrix M, one must specifv an ordering of the 2" config-

urations p that one pitch (or turn) can assume. The simple mapping

(11-11-1) — (11010) — 2*+22+21 =26

vields the following duodiagoral form, as illustrated for n = 4:

(]}

(S]]

b
p-1




where {with appropriate normalizations)

a=e? BT p=¢eB/T and ¢ =el~2-8V/T,

We repeat that the above matrix is not the one we have used. but is similar to it.




A P¢ is similar to P%

This appendix uses notation that is developed in Sections 2. 3.and 4.
T. Goddard [God91] has shown that the row projection matrix PR, is diagonally similar
to the column projection matrix PS,.

P} = DP{,D™!

n

for some diagonal matrix D which “commutes™ with the basis matrix X, (for any positive
I < n), i.e. there exists a diagonal matrix D such that

-~

DX, = X,D.

In this appendix. we exhibit such a diagonal similarity D. and show that it has the required
property.
As usual. we let n and / be fixed positive integers (! < n). Recall that the column
projection matrix is
PnCJ = DY X7 M. X,
and that the row projection matrix is

PR = D' X[ (R. M R)X).

where Dy = XX, and X is the basis matrix whose columns are vectors in S, ;. In addition.
the transfer matrix M, and R, MR, are special cases of duodiagonal matrices:

a a b b a~! ¢! b~ b1
M, = [, : : : .
- = ] a b a b b ¢ \ [ b ¢
= {2 2 )2 )00 L) 2]

where

a =exp((2—- B)/T). b=-exp(-B/T) and ¢ = exp((-2- B)/T).

We shall also identify indices ¢ and j with bit strings of length n.

Theorem A.1.3 fin:\/l,:ﬁn is diagonally similar to M, i.e. there erists a nonsingular di-
agonal matriz
such that
R.M:R, = DM,D™!
Proof. Define D = diag(d(0).....d(2" - 1)) by:

d(7) = exp(2(Bk - 7)/T) {

(5]}




-~

where & is the 1-bit count of i. 7 is the bit transition count of i. and +; and 5, are the
values of the leading and trailing bit of / respectively. The (:.j)entrv of DM, D™} is given
by d(i)(Myn)i;/d(j). So we need to verifv the following (see observations (a) and (b) in

Section 4.2 regarding the nonzero entries of [',):
(a) foreven 7.0 < j <22 - 1:
d(2j)/d(j) = a/a=1 (R)
d(2j +1)/d(j)=a"' /b= exp((2B - 2)/T) (9)
(b) forodd j.0 < j <22~ 1:
d(27)/d(j)=b/a = exp(-2/T) (10)
d(2j+1)/d(j) = b""/b = exp(2B/T) (11)
(c) foreven j. 2" 2 < j < 2n-1 .
d(2j)/d(j) = a/b = exp(2/T) (12)
d(2j+ 1)/d(j) = a"!/c = exp(2B/T) (13)
(d) forodd j. 272 < j <271 —1:
d(2j)/d(j)=b/b=1 (14)
d(2j+ 1)/d(j)=b""/c = exp((2 + 2B)/T) (15)
(e) foreven j.2""1 < j < 3.2""2 _1:
d(2j)/d(j)=b/a~! = exp((2 - 2B)/T) (16)
d(25 +1)/d(;)=b""/b"1 =1 (17)
(f) forodd 7. 2771 < j <3.27-2 _ [.
d(2j)/d(j) = ¢/a”! = exp(-2B/T) (18)
d(2j +1)/d(j)=c71/b~! = exp(2/T) (19)
(g) foreven j. 3 -2""2 < j<2n - 1:
d(27)/d(j)=b/b"" = exp(-2B/T) (20)
d(27 +1)/d(j)=b"1/c"! = exp(=-2/T) (21)
(h) forodd j.3-2""2<j<2" - 1:
d(2j)/d(j) = ¢/b™! = exp((-2 ~ 2B)/T) (22)

d2j+ 1)/d(j)=c1/et =1 (23)

3%




We shall verify (8) and leave the remaining verifications to the reader. Let J be even.
with 0 < j <272 — 1. and let w be the n-bit string corresponding to j. Then

w=0000w(3)o---ow(n-1)00, (24)
and the n-bit string corresponding to 2j is
20=00w(3)o--row(n—1)0000. (23

It is clear from (24) and (25) that j and 2; have the same 1-bit count and the same bit
transition count. So from (7), d(j) = d(2j). O

Proposition A.1.4 D “commutes™ with X1 i.e. there exists a nonsingular diagonal matriz
D € RInilxISnal gych that

~

DX, = X|D.
Thus
D_IXI = X,D!

and

X;D=X;D"=(DX))" =(X;D)" = D"X] = DX}.

Proof. It suffices to show that for each column of X;. the nonzero entries in it are multiplied
by the same constant when X, is premultiplied by D. Since the nonzeros in each column
of X; occur in indices with common 1-bit count. common bit transition count and common
trailing (because / > 1) and hence leading bits (Proposition 4.1.3). and the entries of D are
characterized bv these parameters. the result follows. O

Corollary A.1.5 The row projection matriz P,fl is similar to the column projection matrir
Pf['

Proof. Using the notation of Theorem A.1.3 and Propostion A.1.4.

PR = DF'X[(R.MR.)X,
= D' X/DM,D7'X,
= DY DX M,XD!
= D(Dx'X[M,X)D~' since D3'D = DD5!
= DP¢,D"'. O




References

[Cips7)

(Fucs9]

[Gars3)

[God91]

[GvLN9]

[Hen91]

(Isi25]

[Kac6y]

[KPIx2]

[KW41]

[Onsd4]

[PNOX5]

[PTLRS

[Tho79]

[Wil66)

Barry A. Cipra. An introduction to the Ising model. American Mathematical
Monthly. 94:937-959. 19%7.

Norman H. Fuchs. Approximate solutions for large transfer matrix problewms.
Journael of Computational Physics. 83(1):201-211. 19%9.

Solomon Gartenhaus. Approximation method for spin-half Ising models. Physical
Review B. 27(3):1698-171%8. 1983.
Tom Goddard. Why the row and column indicial subspace projections of the 2D

Ising model transfer matrix are similar. 1991. Private communication.

G. H. Golub and C. F. van Loan. Matrir Computations. John Hopkins Press. 2

edition. 19%9.

Wee-Liang Heng. Analyvsis of projection» of the transfer matrix in 2D Ising models.
Master’s thesis. U.C. Berkeley. 1991.

Ernst Ising. Beitrag zur theorie des ferromagnetismus. Z. Physik. 31:253-25%,
1925.
Mark Kac. Mathematical Mechanisms of Phase Transitions. Gordon and Breach.

New York. 1968, Brandeis Lectures.

W. Kahan. B. N. Parlett. and E. Jiang. Residual bounds on approximate eigensys-
tems of nonnormal matrices. SIAM Journal of Numerical Analysis. 19(3):470-484.
1982,

Hendrick A. Kramers and Gregorvy H. Wannier. Statistics of the two-dimensional
ferromagnet. I and II. Physical Review. 60:252-262.263-276. 1941.

Lars Onsager. C'rystal statistics [. A two-dimensional mode] with an order-disorder
transition. Physical Review. 65:117-149. 1944,

B. N. Parlett and B. Nour-Omid. The use of a refined error bound when updating

eigenvalues of tridiagonals. Linear Algebra and its Applications. 68:179-219. 1985,

B. N. Parlett. D. R. Tavlor. and Z. A. Liu. A look-ahead Lanczos algorithm for

unsymmetric matrices. Mathematics of Computation. 44:105-124. 19%5.

Colin J. Thompson. Mathematical Statistical Mechanics. Princeton University
Press. 1979.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press.
1966.

60




